フェムト秒レーザパルスによるポンプ・プローブ法を用いたエタノール分子の非断熱遷移制御

Control of Non-adiabatic Transition of Ethanol Molecule by Pump-Probe Excitation with Intense Femtosecond Laser Pulses

塩山正真(M2), 阿部智明(B4)

T.Shioyama, and T.Abe

Abstract

Dissociative ionization of ethanol molecule under the intense few-cycle (~8fs) laser pulse excitation was investigated. Compared with the fragmentation obtained by a 40fs laser pulse at the same field intensity, the 8fs laser pulse suppresses C-O bond breaking channel, whereas it leads almost the same C-C bond breaking yield ratio as the 40fs laser. We also tried to lead vibrational nuclear wave packets to the repulsive dissociation state via an energy level crossing point generated by a delayed 8fs probe pulse. However, no enhancement of dissociation to either C-O or C-C breaking channels was observed.

1 はじめに

10¹³W/cm² 以上の高強度レーザを分子に照射すると, 光子場と分子が結合することにより新しいエネルギー 準位構造が生成し,基底準位と解離性準位が交差する (擬交差)[1]. このとき,通常は基底準位に留まって いた振動核波束は、その擬交差点において解離性準位 へ遷移を起こして解離反応が発生する[2]. このような 強光子場の分子ダイナミクスに基づき,近年,数サイ クルパルスを用いたポンプ・プローブ励起法による D⁺の解離反応制御が提案・実証されている[3]. これは 以下のスキームに従う. ポンプパルスにより D₂+の基 底準位に局在した振動核波束は、その準位構造に対応 した振動周期(~22fs)で外側と内側の振動回帰点の間を 往復運動する.このとき、核波束が外側の振動回帰点 (擬交差点)に達するタイミングでプローブパルスによ り擬交差を形成させると、核波束は解離準位へと導か れ解離反応が起こる(D₂⁺ D⁺ + D). 一方で内側の回 帰点において擬交差を形成させても解離反応が起こる 確率は極めて小さい.すなわち、ポンプ・プローブパ

ルスの時間遅延をパラメータとして、D2のイオン化過 程(D2⁺ 生成)と解離反応過程(D⁺ 生成)を制御すること が可能である.この手法のポイントは、電界数サイク ルという超極短光パルス(5~10fs)によって、基底準位 に振動核波束をいかに局在させるかという点にあり、 先に述べた分子固有の振動周期以上の電界時間を有す る光パルスでは決して達成されない.今回我々は、こ のスキームによる解離反応制御を、異なる2つの主反 応軸(C-C 結合および C-O 結合)を有するエタノール分 子に適応させることで、選択的解離反応制御を試み る.

過去に我々は、高強度場(>10¹³ W/cm², 40fs ~ 1ps)に おけるエタノール分子の解離性イオン化反応を調査し た結果,その解離反応ダイナミクスは,強電界場によ って形成される準位擬交差点における振動核波束の解 離準位への非断熱遷移によって説明されることを明ら かにした[6]. ただし、エタノール分子の場合, C-C 結 合軸と C-O 結合軸において擬交差点の位置が異なり, それがエタノール分子の解離特性に違いを与えている [6]. つまり, エタノールの場合, 基底準位における核 波束の往復運動が各結合軸で異なるため,擬交差を形 成させるプローブパルスの時間差によって、C-C 結合 とC-O 結合の解離反応を独立に制御可能であることが 期待される.このようなポンプ・プローブ励起による エタノール分子の解離反応制御は、過去に光パルス幅 40fsのフェムト秒レーザパルスを用いて我々が調査し たことがあるが[4],特別な時間遅延によって C-C 結合 およびC-O結合解離が大きく高まるという制御は達成 されていない.この原因は、上述したように、ポンプ パルスの電界時間(40fs)が核波束の振動周期と比較し て長いため、生成された振動核波束が核間距離方向に 大きく分散している(局在性が低い)ためであると考え た.

そこで本研究では数サイクルパルス(~8fs)を用いる ことで,振動核波束を基底準位上に局在化させること で、上述したポンプ・プローブ励起法によるエタノー ル分子の選択的解離反応制御を試みる.

2 実験

Fig.1 に実験セットアップを示す. 光源から発生した 光パルス幅 30fsのフェムト秒レーザパルスをチャープ パルス増幅器(CPA)により,繰り返し周波数 1kHz, 350 µ J/pulse まで増幅する. 増幅後の光パルスの中心 波長は800nm, スペクトル幅は25nmであり, フーリエ 限界パルスにして光パルス幅は 40fs である.数サイク ルパルス発生のためのスペクトル拡張は、希ガス充填 中空ファイバによって行った[5]. 中空ファイバのコア 径は 126 µ m, 長さは 44cm であり, ファイバ中にはガ ス圧力 400Torr のアルゴンを充填している. この中空 ファイバに f =400mm のアクロマティックレンズによ り入射光パルスを結合させ、ファイバ伝播中の自己位 相変調によりスペクトルを 700nm~900nm まで広げる (Fig.1). ファイバ出射後の光パルスは*f*=400mmの凹面 鏡によりコリメートし、チャープミラーに反射させる ことでファイバ伝播によるスペクトル分散を補償し, 光パルスを圧縮する. Fig.2(a)に圧縮された光パルスの SHG フリンジ分解自己相関波形を示す.これにより、 圧縮された光パルス幅は~8fs(FWHM)であることが確 認された. 圧縮された光パルスは f =200mm の軸外し 法物面鏡により 1.0x10⁻⁸Torr まで真空引きされた飛行 時間質量分析器(TOF-MS)内に集光する(集光サイズ 90 µm). TOF-MS の中にはガス相エタノール分子が封入 されており、集光点において解離反応が起こる.発生 した種々のイオンは TOF-MS のイオン加速方向の末端 に設置されたマイクロチャンネルプレートにより測定 する.

TOF-MS への入射において, TOF 入射窓(8mm-石英) により光パルスに+320fs²の材料分散が付加されてし まうが,これはチャープミラーに余分に反射させるこ とで過剰な負分散をつけ,生成される1価のエタノー ルイオン(CH₃CH₂OH⁺)のイオン収量が最大になるよう に最適な厚さの石英板を挿入することで,TOF-MS内 で光パルスが最も圧縮されるように調整した.ただし 負分散による階段的励起が効率よくエタノールイオン を発生させることも考えられるので[7],CH₃CH₂OH⁺の 生成イオン量を指標としたTOF-MS内におけるフリン ジ分解自己相関を行った.結果を Fig.2(b)に示す. CH₃CH₂OH⁺への生成過程は 7 光子励起であるため, SHG フリンジ分解自己相関波形(Fig.2(a))と比較して 同じ構造は示さないが、そのフリンジ波形の構造は 5-サイクル程度であり、TOF-MS 内で光パルスが圧縮さ れていることが確認された.

Fig.1: Experimental Setup for the dissociative ionization by few-cycle pulse excitation. Inset: Broad-banded spectrum through the hollow fiber, *dashed-line* is the input spectrum, and *solid-line* is the output spectrum after the fiber.

Fig.2: Fringe-resolved autocorrelation trace of compressed broad-band pulse (a) after the hollow fiber measured by second harmonic generation, (b) inside the TOF-MS measured by ion yields of the single-charged ethanol ion $(C_2H_5OH^+)$, respectively.

3 実験結果

3.1 8fs と 40fs 励起による解離性イオン化反応

まず, 光パルス幅 8fs と 40fs 励起によるエタノール 分子の解離反応を比較する. Fig.3 は各光パルス幅にお けるエタノール分子の解離イオン信号である.このと き、両光パルスの集光強度は等しくしている.C-C 結合 解離によって生成する解離イオン CH₂OH⁺の親イオン CH₃CH₂OH⁺に対する生成量は、40fs と 8fs でどちらも 70% 程度である.これはその他の解離イオン $C_{2}H_{5}O^{+}(m=45)$ や $CH_{2}O^{+}(m=30)$ などでも確認されている. 一方, C-O 結合解離によって生成する CH₃CH₂⁺に関し ては、8fs 励起の場合には40fs 励起と比較して約25%抑 制されている.これは C₂H₃⁺(m=27), CH₃⁺(m=15), C₂H₂(m=26)の解離イオンでも確認されている. つまり, 8fs 励起においては、40fs 励起と比較して C-O 結合解離 は抑制される一方, C-C 結合解離は影響しない. 一般 的に、長い電界時間によって準位擬交差を持続させる ことで解離準位への非断熱遷移が促進される[6]こと を考えると,8fs 励起における C-C 結合解離反応の振 る舞いは、準位擬交差における非断熱遷移とは異なる 特性を示していることが伺える.

Fig.3: TOF mass spectra obtained for ethanol molecule with intense laser pulses at the temporal width of the laser field of (a) 8fs (1.1 x 10^{14} W/cm²), (b) 40fs (1.0 x 10^{14} W/cm²), respectively.

3.2 8fs-8fs ポンプ・プローブ励起法による 解離性イオン化反応

次に、8fs 光パルスによるポンプ・プローブ励起実験 を行った.本実験のためのダブルパルス生成において、 通常のマイケルソン干渉計を用いると、ビームスプリ ッタの結合においてレーザエネルギーが 50%以上損失 してしまうので、2枚の石英板(厚さ 5mm)をビーム 断面に設置し、片方を傾けることによって左右のビー ムに時間遅延を付加させた.この様子を Fig.1 に示し た.なお石英板の傾けによる反射率や集光スポット形 状の変化は起こらないことは確認している.また、こ の石英板による材料分散の補償は、TOF 窓による分散 の補償と同様にチャープミラーによって行っている. ポンプパルスおよびプローブパルスの集光強度は 5.5 ×10¹³W/cm²と見積もられる.

Fig.4 (プロット)はポンプパルスとプローブパル スの各時間遅延()における親イオンおよび解離イオ ンの生成量を示している.各イオン信号は =0fs から 20fs 以内に減少し,その後は に依存せず一定値を示 している.=75fs 付近でイオン量のわずかな増加が見 られるが,これは CH₃CH₂OH⁺や H₂O⁺も同様に確認さ れるので,ポンプ・プローブ励起による解離ダイナミ クスを反映したものではなく,実験系のレーザ強度の 揺れが原因であると判断した.以上から,8fs 光パルス によるポンプ・プローブ励起においても,40fs 同様, C-C 結合および C-O 結合の両反応軸において,特定の 時間遅延において解離反応が促進するということは確 認されなかった.

3.3 8fs-40fs ポンプ・プローブ励起法による

解離性イオン化反応

核波束の局在性という意味では、ポンプパルスの電 界時間は短ければ短いほど良い.一方で、核波束の解 離準位への遷移を起こすプローブパルスは必ずしも電 界時間が短くある必要はなく、むしろ遷移確率を考え ると、電界時間は(核波束の振動周期以内で)長い方が 良いと考えられる.そこで我々は、プローブパルスに よる非断熱遷移の確率を上昇させるため、プローブパ ルスの電界時間を 8fs から 40fs に伸張し、同様の実験 を行った.プローブパルスは中空ファイバ入射前の光 パルスを使用するために、中空ファイバを伝播する系 (8fs)と伝播しない系(40fs)で構成されるマハツェンダ 干渉計を構築した.ポンプパルスとプローブパルスの 集光強度はそれぞれ 4.2×10¹³W/cm² および 3.2× 10¹³W/cm² と見積もられる. Fig.4 (プロット)に結果 を示した. 各イオン信号は =0fs から 50fs 以内に減少 し,その後は に依存せず一定値を示している. これ らは先の 8fs-8fs ポンプ・プローブ励起実験と同様の傾 向であり,8fs-40fs ポンプ・プローブ励起実験におい ても、非断熱遷移を促進させる特定の時間遅延は確認 されなかった.

Fig.4: Measured parent ion yields (a) $C_2H_5OH^+$, and fragment ion yields (b) $CH_2OH^+(C-C \text{ bond breaking})$, (c) $C_2H_5^+(C-O \text{ bond breaking})$, and water ion yields (d) H_2O^+ as a function of time delay between pump and probe pulses. The temporal width of the probe pulse is 8fs (plot) and 40fs (plot), respectively, and that of pump pulse is 8fs in both cases.

以上の実験結果から、少なくともエタノール分子の 解離性イオン化反応においては、数サイクルパルスを 用いたポンプ・プローブ励起によって、基底準位を振 動する振動核波束を特定の時間遅延で解離準位へと効 率よく導くという制御スキームが有効ではないことが 確認された.

3.4 8fs 励起における振動核波束ダイナミクス

最後に,8fs 励起における解離ダイナミクスを 40fs 励起と比較するため,解離準位を進行する振動核波束 の時間発展をポンプ・プローブ励起によるクーロン爆 発イメージング法によって観測した.この手法の詳細 なスキームは参考文献を参照されたい[8].

Fig.5 は C-C 結合のクーロン爆発によって生成する

CH₃⁺の運動量を各時間遅延において示したデータで ある(なお, C-O 結合のクーロン爆発に対応する OH⁺に ついては生成イオン量が非常に小さいため確認できな かった). この運動量は、 クーロン爆発が起こる直前の 核間距離(核波束の位置)におおよそ反比例している. 時間遅延が大きくなるに従って運動量が減少している ことが分かる(Fig.5(a)矢印). この時間遅延に依存した 運動量の変化が解離準位を進行する核波束の時間発展 を示している. Fig.5(b)は、各遅延時間の運動量をクー ロンポテンシャルによって C-C 結合間距離に変換した データである.この結果により、8fs 励起によって振動 核波束は C-C 結合軸方向へ平均速度~12.0Å/ps をもっ て進行していることが読み取れる. 40fs 励起において 同様の実験を行うと、その平均速度は 15.0 ± 2.0 /ps である(結果は示していない). つまり, 8fs 励起と 40fs 励起とでは、C-C 結合軸方向の解離準位を進行する振 動核波束は、ほぼ同じ時間発展を示す.この核波束の 平均速度は、進行する解離準位のポテンシャル形状に 大きく影響を受ける[8]ことを考慮すると、8fs 励起で は、少なくとも C-C 結合解離反応については、40fs 励 起の場合と同じ解離準位が寄与していると考えられ る.

Fig.5: (a) Momentum release spectra of fragment ion CH_3^+ generated by Coulomb explosion of C-C bond axis $[CH_3^+--CH_2OH^+]$, and (b) average position of the vibrational wave packet on the dissociative state along the C-C bond reaction axis as a function of time delay between pump (8fs) and probe (8fs) pulses.

4 結論

数サイクルパルス(~8fs)を用いたエタノール分子の 解離性イオン化反応を調査した.本実験によって得ら れた知見は以下の3点である.

8fs 励起の場合, 40fs 励起と比較して C-O 結合解離

反応は抑制されるが, C-C 結合解離反応は影響しない.

D₂ で実証されているような、数サイクルパルスを 用いたポンプ・プローブ励起によって、基底準位を振 動する振動核波束を特定の時間遅延で解離準位へと効 率よく導くという制御スキームは、エタノール分子に 関してはC-C結合およびC-O結合の両結合軸の解離反 応において有効ではない.これはプローブパルスを 40fs に伸長し、解離準位への遷移確率を高めても同様 である.

8fs 励起において,振動核波束は C-C 結合軸方向に 12.0 /fs の速度で解離準位を進行しており,これは 40fs 励起の場合と同じ時間発展である.

以上の知見から、以下の解離ダイナミクスが考察される.少なくとも、C-C 結合解離反応に関しては、その 解離ダイナミクスは電界時間 40fs~8fs の領域で同じ である.そして、数サイクルパルスを用いたポンプ・ プローブ励起法が有効でなかったことから、振動核波 束の解離準位への遷移過程において、準位擬交差点に おける非断熱遷移は支配的でなく、直接的な解離準位 への励起が大きく寄与しているものと考えられる.そ こで,C-C 結合解離反応の制御は、1 価の基底準位ポ テンシャルを移動する波束の動きそのものの制御が必 要となるので、今回のような短パルスによる波束の局 在化よりは広帯域光スペクトル位相の変調を利用し波 束の位相を制御するコヒーレント制御が期待される.

一方で、C-O 結合解離反応に関しては、8fs 励起にお ける抑制効果が確認されたという点で、準位擬交差点 における非断熱遷移が解離過程を支配していると考え られるが、それにも関わらずポンプ・プローブ励起法 が有効でなかった点に関しては検討する余地がある.

References

[1]R.E.Carley,E.Heesel and H.H.Fielding:
Chem.Soc.Rev.,34,949(2005)
[2]K. Yamanouchi: レーザ研究, 29, 243 (2001)
[3]H.Niikura,D.M.Villeneuve, and P.B.Corkum:
Phys.Rev.A,73,021402(2006)
[4]H.Yazawa,T.Shioyama,Y.Suda,F.Kannari,R.Itakura and
K.Yamanouchi:J.Chem.Phys.,125,184311(2006)
[5]M.Nisoli,S.D.Silvestri and O.Svelto:
Appl.Phys.Lett.,68,2793(1996)

[6] R. Itakura, K. Yamanouchi, T. Tanabe, T. Okamoto and

F. Kannari: J. Chem. Phys., 119, 4179 (2003)

[7] S.Chelkowski, A.D.Bandrauk, and P.B.Corkum:

Phys.Rev.Lett.,65,2355 (1990)

[8]H.Stapelfeldt, E.Constant, and P.B.Corkum:

Phys.Rev.Lett.,74,3780(1995)