チタンサファイアチャープパルス増幅システムの移設と出力改善

Relocation and improvement of a Ti:sapphire CPA system

大石 裕(助教)

Yu Oishi

Abstract

We report an improvement of a Ti:sapphire CPA system and a buildup of additional 2nd amplifier. The obtained pulse energy from an improved CPA system was increased to 0.8 mJ.

1 実験装置移設

2008年10月に慶應義塾大学先導研究センターに 先端光波制御研究プロジェクトが発足し,新川崎タ ウンキャンパス内に実験室を設置した.ここでは主 にフェムト秒パルスの発生とその波形整形技術の応 用研究を展開する.本年度はこれまで矢上キャンパ ス内にて使用していたチタンサファイアチャープパ ルス増幅 (CPA: charped pulse amplification)システ ムの移設および再起動が必要である.移設する主な 装置はカーレンズモード同期チタンサファイア発振 器 (Coherent 社 Mira),発振器励起光源 (Coherent 社 Verdi), CPAシステム (THALES 社 α-1000),増幅器 励起光源 (THALES 社 621-D),中空ファイバ圧縮光 学系,液晶空間光変調器と光学除振台である.移設 後には CPA システムからの出力エネルギーを増大す るための2段目マルチパス増幅器の構築を行う.

本報告書では装置移設後のシステム改良点と増設 した2段目増幅器の特性について報告する.

2 CPA システムの改良

移設後の光学定盤(2400 mm×1200 mm 2台)と各 レーザ配置を図1に示す.Verdi(5 W@532 nm)はシ ングルモード緑色レーザ光を利用した実験も行える ように配置した.Miraは移設後に調整し,cw出力で 460 mW,モード同期発振時では76.1 MHzの繰返し で450 mWの平均出力,パルスエネルギー5.9 nJを 得た.出力されるビームは回折による拡がりを抑え るために曲率半径2 mの凹面鏡により平行光として CPA システムのパルスストレッチャに入射した.

パルスストレッチャは一般的なÖffnerタイプ¹で あり,回折格子,凹面鏡,凸面鏡そして折返し鏡で 構成される.THALES社のオリジナルでは回折格子 は供焦点から190mmに配置され,入射パルスはス

Fig. 1 Optical layout of Ti:sapphire CPA system at new experimental room.

トレッチャを2回通すことによって約450 ps 程度ま で時間的に伸ばされていた.ところが,この配置で はストレッチャの透過率が悪く最終的に増幅器へ入 射できるパルスエネルギーが50 pJ 程度しかないこと が明らかとなった.このときストレッチャは1回透 過あたり4回の回折(82%/diffraction)と8回の反射 (85%/reflaction)があり,全体の透過率は約10%にと どまっている.この状態では増幅過程でシード光の 増幅よりもASE (amplified spontaneous emission)が 強く増幅されてしまう問題が生じた.そこで2回透 過している配置をやめて1回として,不足する分散 量は回折格子の位置を鏡焦点から240 mm に変更して 補った.最終的に増幅器へ入射するパルスは0.5 nJ, 280 ps である. 増幅器は1kHz 繰返し動作の再生増幅器を1段目と して使用した.励起光源はランプ励起Nd:YLFレー ザ(THALES社621-D)を使用し,パルスエネルギー 9 mJのnsパルスでチタンサファイア結晶を励起した. 増幅の過程は共振器を構成する全反射鏡の背後に配 置したフォトディテクタを用いて観測し,パルス取 り出しのタイミングを調整した.ストレッチャを2 回透過させていたときはシード光の入射から取出し まで約120 ns(共振器長1140 mmを考慮すると32パ ス)要していたが,ストレッチャの透過率改善によ り取出しタイミングを80 ns(20パス)まで減らすこ とができた.このときの再生増幅器からの出力は1.0 mJであった.

再生増幅器より出力されたパルスはファラデーア イソレータによりシード光の光軸から分離されて ビーム径を拡大(ø=6.0 mm)した後,回折格子対パ ルスコンプレッサへと送られた.従来のコンプレッサ は2回透過のストレッチャで与えられる大きな分散 を補償するために回折格子対の距離を長くする必要 があり,折返しの平面鏡を挿入する配置であったが, ストレッチャの透過回数を減らしたことと再生増幅 器のパス数が大幅に減ったことにより,反射率の低 い平面鏡を取り除くことが可能となった.以前の圧 縮後のパルスエネルギーは約0.33 mJであったが,本 改良後は0.45 mJであった.依然として残るコンプレッ サでの損失の主な原因は4回の回折(85%/diffraction) と折返し鏡の2回反射(89%/reflaction)である.

3 2段目増幅器

より高いパルスエネルギー出力のため,本年 度は2段目増幅器の構築も行った.励起光源に は新たに LD 励起 Nd: YLF レーザ (Coherent 社 Evolution15) を導入した. レーザ出力は 1kHz 繰 返し動作時に12mJであり、マルチパス方式を採 用して飽和増幅領域でのエネルギー取り出しを行 う事を目標とした. はじめに利得媒質としてのチ タンサファイア結晶の選択は励起光の十分な吸収 (Abs.≥95%), 強い熱レンズ効果を抑制するための 低い吸収係数(α≤1.5 cm⁻¹@532 nm)を条件として Brewstar カットの結晶 (ø=5.0 mm, L=20 mm, Crystal System 社)を準備した.実際の結晶に入射される励 起光パルスは集光レンズのフレネル反射などの損 失から7.2 mJで,結晶を1パスすることでそのエ ネルギーの96%が吸収された.この励起光パルス のエネルギーと結晶の条件から, Frantz-Nodvikの

解析式^{2,3}によって励起光パルスの集光スポットサ イズを見積もった.励起エネルギーが一定の時, 結晶透過後の増幅光パルスのエネルギーとパス数 の関係を励起光パルスの集光スポットサイズ(直 径)をパラメータとして図2に示す.励起光パル スと増幅光パルスの結晶における スポットサイズ が 0.7 mm よりも小さい時,出力エネルギーがほぼ 飽和した.このことから励起光パルスの結晶での スポットサイズ(直径)を0.7 mm として二段目増 幅器を図3のようにチタンサファイア結晶を中心 にして誘電体多層膜平面鏡7枚で構築した.励起 光パルスは焦点距離 60 mm と 200 mm のレンズで ビーム径を拡大した後 (ø=11 mm) ビームスプリッ タによって均等に2つに分けられ、結晶の両側か ら対向するように焦点距離 600 mm のレンズでそれ ぞれ集光された. このときチタンサファイア結晶は 放熱性グリースを塗布し,水冷式銅ホルダに固定し た. 冷却水は再生増幅器のチタンサファイア結晶と 直列に接続した約20℃の水で行った。増幅器の調整 は1パス毎にパルスエネルギーが最大になるように 調整し、4パス後で最大2.8 mJ(効率26%)の取出 しエネルギーを得た.しかし、この状態では出力ビー ムに熱レンズによる強い非点収差とモード不整合が 生じたため、励起光の集光レンズの位置を操作して 集光スポットサイズを 0.9 mm 程度まで拡大して増幅 を行った.最終的な出力は2.1 mJであり、依然とし

Fig, 2 Evaluation of the output pulse energy as a function of the number of passes in the second stage amplifier for various values of beam diameter at the crystal.

Fig. 3 Setup of the second-stage 4-pass-amplifier. The pump beams are focused to a Ti:sapphire crystal (20 mm length) placed at the center of the amplifier.

て非点収差は残るが2段目増幅器とコンプレッサの 間に配置するビーム拡大レンズ対の2枚目(焦点距 離750 mm)を縦方向に約10°傾けることによりこれ を補正した.拡大後のビーム径は9 mmであり,パル ス圧縮後は0.8 mJの出力となった.2段目増幅器で 追加される分散量は透過光学素子がチタンサファイ ア結晶の80 mm(4480 fs²)のみであり,コンプレッ サの距離を1.5 mm拡げるだけで容易に分散補償が可 能であった.圧縮後のパルスはPG-FROG(Polarization Gating Frequency Resolved Optical Gating)を用いて測 定し,コンプレッサの距離と角度の微調整を行った. 得られたパルス幅は47 fs でありあり,ほぼフーリエ 変換限界であった.

4 まとめと今後の展望

本年度は矢上キャンパスで使用していた CPA シス テムを新川崎キャンパスに移設した.システム内の パルスストレッチャの構成を見直すことで、シード 光の強度を高めて再生増幅器で発生する ASE を抑制 した.さらにコンプレッサの構成を見直すことで移 設前と比べて 1.5 倍のパルス出力を得た.一方で、発 振器とパルスストレッチャの間に透過率 20% の 4-f 波形整形器を挿入した場合には ASE の影響が出現す る.この影響を完全に抑制した前置波形整形を行う にはパルスストレッチャを構成する球面鏡と折返し ルーフ鏡の反射率を高める必要があるだろう.これ によりパルスストレッチャの透過率を現在のおよそ5 倍に高めることが可能となる.

さらに、出力エネルギー増大のために2段目増幅 器の構築を行った.出力エネルギーは最大2.8 mJに 達し、ビーム品質を重視した状態でも2.1 mJの出力 であり、パルス圧縮後では0.8 mJの出力を得た.現 在よりも2段目増幅器の取出しエネルギーを高める には励起光強度を高める必要があり、集光レンズを より損失の少ないものに交換する必要がある.これ により,増幅器出力で3.0 mJ程度の出力が見込まれる. 一方で、パルスエネルギーの増加に伴ってコンプレッ サに入射するビーム径を拡大する必要があるが、現 時点ではコンプレッサの折返しルーフ鏡のサイズに よってビーム径が約11 mmに制限される.コンプレッ サの透過率向上と共に折返し鏡の交換が必要だろう.

謝辞

レーザの移設作業において多大なるご協力をいた だいた丸勝運輸,タレスレーザー、コヒレントジャ パンの各担当者様に感謝いたします.

References

- G. Cheriaux, P. Rousseau, F. Salin, J. P. Chambaret, B. Walker, and L. F. Dimauro, "Aberration-free stretcher design for ultrashort-pulse amplification," Opt. Lett. 21, 414-416 (1996).
- [2] L. M. Frantz and J. S. Nodvik, "Theory of pulse propagation in a laser amplifier," J. Appl. Phys. 34, 2346 (1963).
- [3] A. E. Siegman, Lasers (University Science Books, Mill Vallay, CA, 1986).