周波数域干渉 NSOM を用いたフェムト秒プラズモンの応答関数計測

Measurement of response function of femtosecond Plasmon

by spectral interferometry with Near-field scanning optical microscopy

松石圭一郎(M2), 大西秀太朗(B4)

K. Matsuishi and S. Onishi

Abstract

We applied a nova method of a spectral interferometry combined with Near-field scanning optical microscopy (NSOM) in the spatio-temporal characterization of femtosecond localized Plasmon at metal nano-structures. And, we measured response function of femtosecond localized Plasmon at metal nano-structures by this method.

1 はじめに

従来の伝播光には回折限界があり,波長の2分の1 以下に光を絞ることは出来ない。しかし, デバイスの 大容量化,高集積化,省電力化という時代の流れが, 回折限界以下の光を扱う技術を求めている。ナノ領域 で光を扱う方法の一つに金属ナノ構造のプラズモン現 象を用いる方法がある。局在プラズモン共鳴とは、金 属ナノ構造が特定の波長と共鳴して,その結果著しく 増強した電場が,ナノ構造近傍に局在する現象である。 ナノ構造の局在プラズモン共鳴現象には,入射波の周 波数依存性, 偏光依存性がある。この特性を応用する ことで、ナノ領域で局在プラズモン場を時空間的に制 御できると考えられている。これまでに規則的なナノ 構造とフェムト秒レーザパルスのアダプティブ偏光波 形整形を用いることで,局在プラズモンを空間的に制 御する研究が報告されている[1]。また、局在プラズモ ンの時空間制御を、プラズモン応答関数を測定して、 励起光の波形整形とプラズモン応答関数によって実現 するという研究も報告されている[2,3]。

我々は局在プラズモンの時空間制御を目指して,ま ず周波数干渉(SI)法と近接場光学顕微鏡(NSOM)を組 み合わせた新たな測定系(SI-NSOM)により,金属ナノ 構造におけるフェムト秒レーザ励起局在プラズモンの 時空間特性を測定し,プラズモン応答関数を計測した。 今後,測定したプラズモン応答関数と励起光のフェム ト秒波形整形技術を用いることで,局在プラズモン場 の時空間制御が実現可能だと考えられる。

2 理論

この章では、プラズモン応答関数によるプラズモン 場の制御について簡単に説明する。プラズモン応答関 数を $\mathbf{E}_{impulse}(\Box, \mathbf{r})$ 、波形整形された入射波を $S_{shaped}(\Box)$ とすると、制御されたプラズモン場 $\mathbf{E}_{new}(\Box, \mathbf{r})$ は、

$$\mathbf{E}_{\mathbf{n} \mathbf{e}}(\boldsymbol{\omega}, \mathbf{r}) = S_{s \mathbf{h} \mathbf{a}}(\boldsymbol{\omega}) \cdot \mathbf{E}_{\mathbf{i} \mathbf{m} \mathbf{p}}(\boldsymbol{\omega}, \mathbf{r})$$

と表すことができる。すなわち、プラズモン応答関数 を求めることができれば、その応答関数とフェムト秒 波形整形技術によって、局在プラズモン場は時空間的 に制御が可能であると考えられる。

3 実験セットアップ

SI-NSOM の実験セットアップを Fig.1 に示す. 光源

Fig. 1 Experimental setup for SI-NSOM.

は Ti:Sappaire レーザ (パルス幅~8 fs, 繰返し周波数 150 MHz, スペクトル帯域 650-1100 nm, VENTEON) である。今回は 4f 系の関係でスペクトル帯域は 750-920 nm である。近接場光学顕微鏡は自作のもので あり、プリズムを用いた全反射照射系である。プロー ブは開口径 160 nm, 遮光コートアルミのファイバプロ ーブを用いており、コレクションモードにより近接場 光を取得した。VENTEON のレーザ光を BS で信号光 と参照光に分け、信号光は 4-f 波形整形器で、波形整 形して, λ/2 板で偏光方向を調整して, 近接場光学顕 微鏡に入射し、ファイバプローブでナノ構造近傍の光 を検出している。一方,参照光は遅延時間をつけて, 分散補償用にファイバプローブと同質のファイバに伝 搬させた後に、BS で信号光と同一直線状にしている。 その後, グレーティング-レンズ対, 冷却 CCD カメラ によって、周波数干渉縞を測定している。

測定に用いたナノ構造は Fig. 2(a)のようにアスペク ト比の異なるナノロッドを十字構造に組み合わせた金 十字ナノ構造をガラス基板上に作製したものであり, アスペクト比は3と3.5~7である。Fig. 2(b)にシミュレ ーションによって計算される共鳴波長を示す。

Fig. 2 Cross-shaped nanostructure. (a) The schematic view of nanostructures. (b) Resonance spectra of nanostructures.

4 実験結果

NSOM による測定結果を Fig. 3 に示す。(a)はトポグ ラフィ,(b)は 2ののロックイン検出(の:チューニング フォークの共鳴周波数)での強度マッピング,(c)は DC 検出での強度マッピングを示している。入射光は 臨界角(43°)以上になるように入射して,偏光方向は S 偏光である。使用したプローブの先端径が 500 nm 程 度あるため十字構造を読み取ることはできないが,試 料があることはトポグラフィ結果で確認できる。また トポグラフィと強度マッピングの結果に相関性がある ことが分かる。さらに,Fig. 3(d)に Fig. 3(c)の測定点に おいて測定した DC 検出での距離依存性を示す。この

Fig. 3 The result of NSOM measurement of Au cross-shaped nanostructure. (a) Topography. (b) Intensity mapping by 3ω lock in detection. (c) Intensity mapping by DC detection. (X is measurement point.) (d) Distance dependence.

結果から検出される光強度に距離依存性が確認でき, プラズモン場を測定できていると考えられる。つまり, ロックイン検出のできない周波数干渉法でも測定可能 であると考えられる。この測定点において,プラズモ ン応答関数を測定した。まず,冷却 CCD 分光器に用 いて測定したスペクトルを Fig. 4 に示す。プラズモン スペクトルを入射光のスペクトルで割ることで,周波 数域における強度応答関数を求めることができる。次

Fig. 4 Spectrum of Incident pulse and the near-field light.

に、SI-NSOM によって測定した干渉縞を Fig. 5(a)に示 す。冷却 CCD カメラの露光時間は 30 ms である。この 干渉縞をフーリエ変換位相解析法によって解析して求 めた相対位相を Fig. 5(b)に示す。信号光と参照光の分 散補償をすることで、周波数域における位相応答関数 を求めることができる。以上の方法で求めた周波数域 プラズモン応答関数を Fig. 6(a)に示す。さらに周波数 域応答関数をフーリエ変換することで得られる時間域 応答関数を Fig. 6(b)に示す。

Fig. 5 The result of SI-NSOM. (a) SI fringe pattern measured by SI-NSOM. (b) Reconstructed phase from.

Fig. 6 Plasmon response function. (a) Frequency domain. (b) Time domain.

Fig.6 から SI-NSOM によってプラズモン応答関数 を求めることができたことが分かる。しかし, Fig.6 (a) から分かるように,周波数域応答関数は位相も振幅も ほぼ線形である。これは,アルミコートプローブの影響でナノ構造のプラズモン共鳴がなくなってしまうた めである。つまり,アルミコートプローブ存在下での 金ナノ構造のプラズモン応答関数を測定していると考 えられる。

5 まとめ

SI-NSOM という新たな実験系によって、プラズモン 応答関数を測定することができた。今回、金属コート プローブの影響が大きく金ナノ構造のプラズモン共鳴 は測定できなかったのが、コートなしのプローブを用 いてプラズモン共鳴を測定できる可能性がある。プラ ズモン共鳴を観測できれば、本手法によりプラズモン 応答関数を取得して、その応答関数とフェムト秒波形 整形技術により、ナノ構造のプラズモン場を時空間的 に制御できると考えられる。

References

- M.Aeschlimann, M.Bauer, D.Bayer, T.Brixner, F. Javier, G.Abajo, W.Pfeiffer, M.Rohmer, C.Spindler and F.Steeb, Nature 446, 301 (2007)
- [2] J. S. Huang, D. V. Voronine, P. Tuchscherer, T. Brixner, and B. Hecht, Phys. Rev. Lett. B79 195441 (2009)
- [3] A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer and M. B. Raschke, Nano. Lett. 10, 2519 (2010)