フェムト秒レーザ測定法としての自己参照型周波数干渉法の評価

Assessment of self-referenced spectral interferometry as a diagnostic of femtosecond laser pulses

藤井 令央 (B4)、吉清 健太(M2) Leo Fujii, and Kenta Yoshikiyo

Abstract

We examine a femtosecond laser pulse characterization method of self-referenced interferometry (SRSI) by constructing a numerical model.. This method is useful only when pulse width is sufficiently short with less dispersion.

1. はじめに

フェムト秒レーザパルスの時間波形の測定方法は、 今日に至るまで様々な方法が考案されてきた。現在 最も広く用いられているものは Frequency-Resolved Optical Gating (FROG) と Spectral Phase Interferometry for Direct Electric-field Reconstruction (SPIDER) であり、これら2つの波形測定方法では フェムト秒レーザパルスの振幅および位相の両方 の測定が可能である[1][2]。

しかし、FROGではフェムト秒レーザパルスの時 間波形を測定する際、繰り返し計算アルゴリズムを 用いるため比較的長い時間がかかり、リアルタイム の計測は行えない。また、SPIDERは実験系が複雑 であり、波形測定のためパルス間隔に関する予備実 験が必要とするように手間が多い。さらに、この2 つの測定法では測定可能なスペクトルの範囲に限 界がある。

これらの問題を解決するフェムト秒レーザパル ス波形測定法に近年報告された Self-Referenced Spectral Interferometry (SRSI) がある[3]。参照パルス を必要とする SI に対してこの方法では参照パルス なしで計測が可能であり、測定パルスの波長帯域が 各光学素子の透過帯域のみで制限されるため近赤 外から中赤外領域まで幅広い波長帯域での測定が 可能である。ただし、これまでの原理実証的な報告 のほとんどが、FTLパルスに近いパルスのみである ため、本研究では、波長 800 nm 帯で非線形偏光回 転をもちいた SRSI を構築し、測定パルスの分散特 性をどの程度正確に測定できるかを検証した。

2. SRSI 測定法

Fig.1 に SRSI 測定系の概念図を示す。SRSI 測 定系に入射した測定パルスは、偏光子によって直線 偏光化され、さらに複屈折結晶を通過することで直 交する 2 つの偏光成分に分けられる。このとき、2 つのパルスには複屈折結晶の複屈折率に応じた時 間遅延が付加する。この 2 つのパルスは非線形光学 結晶に集光され、複屈折結晶の進相軸向きの偏光方 向のパルスは結晶内で 3 次の非線形光学効果であ る直交偏光波 (Cross Polarized Wave: XPW)発生 を受けて、自身の偏光方向と直交する偏光を持つパ ルスが発生する[4]。SRSI では、この XPW が広帯 域な短パルスとなり得ることから参照パルスとし て、時間遅延を持つ測定パルスとの周波数領域にお ける干渉パターンを測定する。

Fig.1 Schematic of a Self-Referenced Spectral interferometry

測定された干渉パターンは測定パルスと参照パ ルスの電界表現を用いて次のようにあらわされる。

$$S(\omega) = \left| E_{XPW}(\omega) + E(\omega)e^{i\omega\tau} \right|^{2}$$
$$= S_{0}(\omega) + f(\omega)e^{i\omega\tau} + f^{*}(\omega)e^{-i\omega\tau}$$
(1)

ここで、au は測定パルスと参照パルスの時間遅延で あり、 $S_0(\omega)$ と $f(\omega)$ はそれぞれ次の式で表される。

$$S_0(\omega) = \left| E_{XPW}(\omega) \right|^2 + \left| E(\omega) \right|^2 \tag{2}$$

$$f(\omega) = E_{XPW}^*(\omega)E(\omega)$$
(3)

得られた干渉パターンは逆フーリエ変化によっ て次のように時間域表現される。

$$FT^{-1}[S](t) = E^*_{XPW}(-t) \otimes E_{XPW}(t) + E^*(-t) \otimes E(t)$$

$$+ f(t-\tau) + f^*(-t-\tau)$$
(4)

このとき、2 つのパルスの時間遅延が十分に大き ければ $f(t-\tau)$ だけをフィルタリングすることが 可能であり、それをフーリエ変換して再度周波数領 域 に 戻 す こ と で $f(\omega)e^{i\omega\tau}$ を 得 る 。 こ こ で

$$|E_{XPW}(\omega)| \ge |E(\omega)|$$
が任意の周波数で成り立つとき
測定パルスの周波数強度は

$$|E(\omega)| = \frac{1}{2} \left(\sqrt{(S_0(\omega) + 2|f(\omega)|)} + \sqrt{(S_0(\omega) - 2|f(\omega)|)} \right)$$
(5)

$$\varphi(\omega) = \varphi_{XPW}(\omega) + \arg f(\omega)$$
 (6)

で与えられるが、SRSI では参照パルスの位相情報

 $\varphi_{XPW}(\omega)$ が未知であるため、反復計算を行うことで 測定パルスの正確な位相情報を得る。

反復計算では、暫定的に $\varphi_{XPW}(\omega) = 0$ と仮定して 測定パルスの時間波形を構築し、得られた時間波形 から参照パルスである XPW の時間波形を次の式で 求める。

$$E_{XPW}(t) = |E(t)|^2 E(t)$$
⁽⁷⁾

こうして求めた参照パルスの時間波形から周波 数位相 $\varphi_{XPW}(\omega)$ を取得し、式(5)を再度計算するこ とで新たに測定パルスの時間波形が計算される。同 様の計算を繰り返すことで、測定パルスの時間波形 は収束し、正確な測定パルスの情報が得られる。

3. 実験セットアップ

Fig.2 に実験セットアップを示す。

Fig.2 Exprimetal setup of SRSI

共振器から得られたフェムト秒レーザパルスは チャープパルス増幅器(chirped pulse amplifier: CPA) によって増幅される。CPA から出射されるフェム ト秒レーザパルス(中心波長 800 nm、繰り返し周波 数 1 kHz、パルス幅 50 fs、平均出力 50 mW)は SRSI 測定系に入射し、厚さ 0.5 mm のYVO₄結晶内で 400 fs の遅延時間が付加され、f = 150 mm の凹面鏡で厚 さ 0.5 mm の BaF₂結晶に集光される。分光器では 測定光と BaF₂結晶内で発生した XPW の干渉パタ ーンが測定される。

この時、式(1)~(7)で測定パルスの時間波形が再構 築できるようにするため、任意の周波数で $|E_{XPW}(\omega)| \ge |E(\omega)|$ が成り立つように調整し、分光 器で得られた干渉パターンを LabVIEW で作成した 解析プログラムにかけて、測定パルスの時間波形を 得た。

4. 実験結果

Fig.3,4 にフェムト秒レーザパルスの測定結果を 示す。本実験では **SRSI** での測定結果と **FROG** の測 定結果を比較した。

Fig.3 SRSI & FROG measurement of the FTL pulse (a)Time domein(b)Frequency domein

Fig.3 をみると、SRSI と FROG の測定結果はほぼ 一致し、測定パルスに分散が乗っていない状態であ れば SRSI でフェムト秒レーザパルスの測定が正確 に行えたことを示している。

一方、Fig.4 をみると、測定パルスに大きく分散 をかけた状態では SRSI と FROG の測定結果は一致 しなかった。

5. 数値モデル解析

SRSI 測定系の特性を調査するために数値モデル プログラムを作成し、任意の波形における SRSI の 測定結果を計算した。

仮想パルスプログラムでは、任意の周波数強度と 周波数位相を与えることで、SRSI 測定系で得られ る干渉パターンを計算し、解析プログラムによって もとの入力波形の再構築を行う。異なる分散値を与 えた場合のプログラムの計算結果を Fig.5 ~ 7 に示 す。この時、それぞれの仮想入力パルスのパルス幅 は約 50 fs,60 fs,100 fs で、スペクトルは全て実験値 と同じにし、そのスペクトル幅は 20 nm とした。ま た、任意の周波数で $|E_{XPW}(\omega)| \ge |E(\omega)|$ の関係を満 たすように参照パルスと測定パルスのスペクトル

Fig.5 Analysis result of simulated FTL pulse(a)Time domein(b)Frequency domein

Fig6. Analysis result of simulated chirped pulse (GDD=500fs²). (a)Time domein(b)Frequency domein

Fig7. Analysis result of simulated chirped pulse (GDD=1500fs²) (a)Time domein(b)Frequency domein

Fig.5~7からわかるように、仮想パルスに与える 分散値が大きくなるほど、入力波形の再構築に誤差 が生じていくことが分かった。これは、測定パルス の分散値が増えるにしたがって、非線形光学効果に よって発生する XPW のスペクトル帯域が狭くなっ ていき、干渉パターンに測定パルスの情報が含まれ なくなってしまうためであると考えられる。Fig.8 には、各入力波形の分散値における再構築波形の分 散値のプロットを示す。また、同様の数値モデル解 析を入力パルスのスペクトル幅を変えて行ったと ころ、スペクトル幅が広いほど、分散値を与えた時 の再構築精度は悪くなった。

6. まとめ

本研究では、SRSIによるフェムト秒レーザの波形 測定を行った。また数値モデルによる SRSI 測定系 の特性調査を行い、その測定限界を調べた。SRSI 測定系は2次分散値の低い FTL パルスの測定は可 能であるが、2次分散値の高いパルスは広帯域な参 照パルスが得られないため測定に制限があり、分散 補償器によって測定可能な分散値まで補償してパ ルスの分散値を求める逆算的手法が必要であるこ とが分かった。

References

 D. J. Kane and R. Trebino, IEEE J. Quantum Electron. 29, 571 (1993).

[2] L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer and U. Keller, Opt, Lett, 24, 1314 (1999).

[3] T. Oksenhendler, S. Coudreau, N. Forget, V.Crozatier, S.Grabielle, R. Herzog, O. Gobert, andD. Kaplan, Appl. Phys.B 99, 7 (2010).

[4] N. Minkovski, G. I. Petrov, S. M. Saltiel, O.Albert, and J. Etchepare, J. Opt. Soc. Am. B 21, 1659 (2004).

Fig8. GDD characteristic of SRSI