NSOM の空間走査性と Illumination-collection mode 周波数干渉計測

Stable spatial scanning of NSOM and spectral interference detection

an illumination-collection mode

正木 雄太 (B4)

Yuta Masaki

Abstract

We report the experimental results of topography and intensity mapping obtained by an illumination-collection mode NSOM, where near-field light is excited and detected by the common fiber probe. However, the signal to noise ratio is not sufficient to measure spectral interference (SI) fringe in an SI-NSOM setup. Moreover, a large amount of group velocity dispersion significantly broadens signal pulses and decreases temporal resolution of NSOM.

1. はじめに

情報化社会の発展に伴って,光デバイスの大容量 化・微細化が求められてきているが,従来の光学で は光を回折限界以下に閉じ込めることができない。 そこで,物質界面上に存在する近接場光を用いたナ ノフォトニクスが昨今注目されてきている。特に, 金属ナノ粒子に光を照射することで生じる局在プ ラズモン共鳴は,光エネルギーをナノメートルスケ ールの空間へ閉じ込め,尚且つ共鳴現象により強い 電場を誘起することができる。更に,この局在プラ ズモン共鳴はフェムト秒スケールの時間応答を有 するために,フェムト秒レーザを励起源とすること で,超微細な空間に超高速な電場を生成することが できる。

一方で,プラズモン場はナノ粒子の半径と同程度 の空間に局在し,非伝搬である。したがって,この プラズモン場の応答を知るためには,同程度の大き

さのナノ粒子を近づけプラズモン場を散乱光へ変 換する必要がある。この原理を利用したものに, 走 查型近接場光学顕微鏡(NSOM: Near-field scanning optical microscopy) がある。NSOM は 先端径がナノメートルオーダーであるファイバプ ローブをサンプルに数十 nm まで近づけることで 物質界面上の近接場光を励起,または検出している。 このために、回折限界以下の空間分解能を有する。 NSOM はその目的に応じて3つのオペレーション モードがある。Fig.1に3つのモードを示した。フ ァイバプローブによって近接場光を励起,検出する のが Illumination mode と Collection mode である。 一方で,励起も取得も同一ファイバプローブで行う のが Illumination-collection mode である。 Illumination mode と Collection mode では励起と 検出のどちらか一方の空間分解能が落ちてしまう が, Illumination-collection mode を用いれば、ど ちらも近接場相互作用を利用しているために,空間 分解能が回折限界以下となる。この Illumination-collection mode NSOM とフェムト 秒レーザを組み合わせることで, 高時間分解能・高 空間分解能を有した光学顕微鏡を構築することが できる。

今回我々は,金ナノ粒子における超高速なプラズ モン場を観測することを目的として,

Illumination-collection mode NSOM の構築を試みた。

2. 実験セットアップ

Fig.2に強度マッピング取得のための実験セッ トアップ図を示す。励起源には、モード同期 Ti:Sapphire レーザ (波長 650~1050 nm, パルス幅 10 fs, 繰り返し周波数 150 MHz, VENTEON) を用 いている。励起光は、波形整形用の 4f 系を通った 後に, Illumination-collection mode NSOM に入る。 NSOM では、ファイバプローブによってサンプル を励起した後に、同一のファイバプローブによって プラズモン場を検出する。ファイバプローブは先端 径が 500 nm 程度, 開口径が 100 nm 程度の遮光コ ート金のファイバプローブを使用している。シグナ ル光は非常に微弱なので、光電子倍増管(PMT) で計測している。また,ファイバ内の反射光がノイ ズとなって S/N 比を悪化するため、プラズモンの 強度がチューニングフォークの振動数の変調を受 けていることを利用してその振動数でロックイン 検出している。図中のピンホールはファイバカップ ラのための対物レンズからの反射光をはじくため に置いてある。

サンプルとファイバプローブの距離制御にはシ ェアフォースによるフィードバック制御を用いて いる。チューニングフォークの振幅の変化をロック イン検出し,目標値との差に応じてピエゾステージ が動くようになっている。このシェアフォースフィ ードバックは本研究室でこれまで用いてきたもの と同じである。

更に、プラズモン場の位相を調べるための周波数 干渉法(SI)のセットアップを組んだ。そのセット アップ図が Fig. 3 となる。Fig. 2 と異なるのは、 BS によってレファレンス光を準備していることで あり、これはシグナル光との時間遅延差を可動ステ ージによって調整できるようになっている。また、 SI 測定のために回折格子によって周波数ごとに角 度分散し、フーリエ面の画像を冷却 CCD カメラで 計測できるようになっている。ここで、シグナル光 とレファレンス光の相対位相が大きくずれている と SI の干渉縞が見えにくいと考えたために、同質 で長さがファイバプローブの 2 倍であるファイバ にレファレンス光を通すことでレファレンス光の 位相を調整している。

Fig. 2 Setup diagram of Intensity mapping

Fig. 3 Setup diagram of SI measurement

次に,サンプルとして用いた金ナノ粒子について 説明する。Fig. 4 に金ナノ粒子の設計図とその SEM 画像を示す。厚さ 0.65 mm のガラス基板に並 んでおり電子ビームリソグラフィで作製されたも のである。サンプルの高さは 30 nm,大きさは 100 nm 程度である。SEM 画像からも分かるように, 金ナノ粒子のエッジは丸みを帯びており,この金ナ ノ粒子の光学特性を知るためには FDTD 法では不 十分であり,NSOM によって評価する必要がある。

(b)

Fig. 4 (a) Schematic image and (b) SEM image of cross nanostructures

3. 実験結果

▲. トポグラフィの再現性の確認

m 近接場光を励起,または測定するためにはファイ バプローブとサンプルの距離が安定していなけれ ばならない。また、サンプルが非常に微小である-方で金ナノ粒子の任意の点において励起と検出を 行いたいという目的がある。そのためにはプローブ とステージの相対的な位置が安定していなければ ならない。以上の理由から、トポグラフィの安定度 を測るために、テストグレーティングを用いて1 軸マッピングの再現性を確認した。その中で,目標 値等のパラメータの最適化を行った。Fig.5にテス トグレーティングのSEM画像と1軸マッピング結 果を示す。グレーティングの高さは112 nm, 周期 は3um,素材はシリコンである。1軸マッピング ではトポグラフィの安定性を確かめるために繰り 返し測定を行っている。1軸マッピングを見ると, 回折格子の形状が現れており,また再現性があるこ とが分かる。プローブによって、フィードバック制 御における最適な目標値, P・I・D 値が変わってし まうので、プローブを交換する度にこれらのパラメ ータを調整する必要がある。

B. 金ナノ粒子の強度マッピング計測

Fig. 4 の金ナノ粒子のトポグラフィ画像と強度 マッピング画像を取得した。取得した画像を Fig. 6 に示す。赤い円で囲ったところが金ナノ粒子のイメ ージである。このように、トポグラフィと強度マッ ピングの画像において金ナノ粒子が確認できた。こ のことから Illumination-collection mode NSOM が回折限界以下の分解能を持つ光学顕微鏡として 有効であることが示された。しかしながら、右下に 出ているゴーストイメージが何に起因しているの かはまだ不明であり、今後の課題となっている。

C. 金ナノ粒子の SI 計測

金ナノ粒子のプラズモン場の位相を調べるため に, Fig. 4 のセットアップ図で SI 計測を行った。 Illumination-collection mode NSOM だと, サンプ ルの励起と検出を同一ファイバプローブで行うた めにノイズが大きい。これに対して, SI 計測では 時間遅延の大きさによって干渉縞の幅が決まるた めに, そのフーリエ面においてノイズをカットする ことができると考えた。しかしながら, シグナル光 とレファレンス光の光路差を計算して, Delay 装置 を動かしたが干渉縞を確認することができなかっ た。更に, 時間遅延を合わせるために相互相関計測 を行ったがこちらでも干渉縞の確認を行うことが できなかった。原因としては, やはりノイズの大き さが大きいので, 干渉縞がノイズの中に埋もれ我々 の用いている冷却 CCD カメラのダイナミックレン ジでは観測することができなかったことが挙げら れる。

4. まとめ

Illumination-collection mode の NSOM を新たに構築し、金ナノ粒子のトポグラフィ画像及び強度マッ ピング画像を取得することができた。しかしながら、 その S/N 比が悪いこと、ファイバ中に群速度分散が 乗ってしまい時間分解能が落ちることは Illumination-collection mode NSOM の欠点であり、今 後はこれを解消していく必要がある。S/N 比が悪く SI 計測ができないことに関しては、各ピクセルに おいてロックイン検出ができるロックインカメラ を適切に用いること、群速度分散が乗ってしまうこ とに関しては、ファイバ長を短くし群速度分散の補 償機構を設けることが改善策として挙げられる。