# フェムト秒時間分解能ストリークイメージング

Optical Streak Imaging System with Femtosecond Time Resolution 中村葵(M2),中川桂一(東京大学大学院 D3),藤井令央(M1),伊佐文宏(B4) Aoi Nakamura ,Keiichi Nakagawa ,Leo Fujii and Fumihiro Isa

#### Abstract

We developed an optical Streak imaging system that can achieve single shot, continuous 1-D image acquisition. Using linearly frequency chirped broad band laser pulses, the instantaneous frequency can exactly corresponds to the time. In experiments, we acquired the space-temporal,2-D image of coherent phonon-polariton waves generated in a LiNbO<sub>3</sub> crystal by a femtosecond laser pulse with an imaging spectrometer.

# 1. はじめに

ピコ秒からフェムト秒オーダの現象を捉える方 法には、ポンプ・プローブ法やストリークカメラな どがある. ポンプ・プローブ法は現象を起こすポン プ光に対して測定用のプローブ光のタイミングを ずらしながら何度もデータを取得する方法であり, 対象となる現象は再現性のあるものに限られる.ま た,ストリークカメラは被測定光の時間的・空間的 な光強度変化を直接的に観測できるが、1次元空間 の現象のみしか捉えることができない. そこで, こ れらの欠点を補う、つまり複雑で高速な現象を1 ショットで2次元撮影できる撮影手法として、 SMAP (Spatiotemporal Mapping Photography)が開発 された[1]. 2009 年に世界最高速のカメラとして STEAM が発表された[2]が、SMAP はその時間分解 能を上回る 230 fs を実現している.しかし, SMAP では今のところ連続して取得できる画像の枚数は 限られており、6枚が限界である。この枚数はセッ

トアップ内のミラーの枚数に依存するため, 大幅に 増やすことは難しい. そこで, この問題点を解決す るための方法が本研究において構築したストリー クイメージングである. この手法では, 1 次元空間 の情報に限定する代わりに, 分光器の分解能で決ま る時間分解能で連続的撮影を試みた. 実際にフェム ト秒レーザパルスで励起されたフォノン伝搬の観 察を行うことで原理実証実験を行った.

#### 2. 実験方法

#### A.CPA を光源とする PCF・高非線形ファイバ入射

2-B において詳細を記述するが,時間窓を 50 ps まで広げるにはスペクトルの広帯域化が必要であ る.そのために PCF と高非線形ファイバでの広帯 域化を図った.本実験のセットアップを Fig.1 に示 す.用いたファイバは SC-5.0-1040 (NKT Photonics) と高非線形ファイバ(住友電工)であり,それぞれの パラメータは Table1 にまとめた.SC-5.0-1040 のフ ァイバを使った実験では,CPA から出射された光を エキスパンダを用いてビーム径を 4.2 mm×3.8 mm



Fig.1 The experimental setup to input to PCF and highly nonlinear fiber. (a) SC-5.0-1040. (b) highly nonlinear fiber.

| Table1 Parameter of PCF | and highly | nonlinear | fiber |
|-------------------------|------------|-----------|-------|
|-------------------------|------------|-----------|-------|

|               | SC-5.0-1040     | 高非線形ファイバ |
|---------------|-----------------|----------|
| コア径 (um)      | 4.8±0.2         | 10       |
| 0 分散波長        | $1040 \pm 10$   | 1320     |
| ( <b>nm</b> ) |                 |          |
| NA            | $0.20 \pm 0.05$ | 0.4      |

から 2.4 mm×2.3 mm に拡大し,スポットサイズが 3.82 µm × 3.99 µm, NA が 0.25 となるようにセッ トアップを組んだ.

一方,高非線形ファイバを使った実験では、CPA から出射された光をエキスパンダを用いてビーム 径を 4.2 mm×3.8 mm から 1.4 mm×1.17 mm に拡大 し,スポットサイズが 6.56  $\mu$ m × 7.23  $\mu$ m, NA が 0.15 となるようにセットアップを組んだ.

#### B.フォノンポラリトン伝播の撮影

フォノンポラリトン伝播のセットアップを Fig.2 に示す.この手法で得られる画像は空間-波長の 2 次元画像である.これでは時間的な変化を捉えるこ とはできないが,プローブ光に線形周波数チャープ を与えることによって波長ごとに時間差が生まれ たパルスとなるため,空間-時間のイメージングが 可能になる.このときの時間窓は波長帯域と周波数 チャープの量に依存し,時間分解能は周波数チャー



Fig.1 Setup of streak imaging with one pulse.

プの量と分光器の波長分解能に依存する.

本実験では LiNbO<sub>3</sub>媒質中のフォノンポラリトンの伝搬を観察対象とした.この伝搬速度は 4.6×

10<sup>7</sup> m/s であり、50 ps で約2 mm 伝搬する. そこ で,この現象を撮影するための時間窓を設定し,達 成するための波長帯域と周波数チャープ量を計算, 波長帯域の拡張は 2-A の方法では広帯域化が難し いことが分かったため(3-A に詳細を記述),中空フ ァイバを用いることとした.周波数チャープの付加 は光学ガラスを利用して行った.

中空ファイバからのパルス(パルス幅約 50 fs,ス ペクトル幅約 200 nm)を光学ガラスの材料分散によ って 50 ps まで伸長するのに必要なガラス長さの計 算方法を以下に示す.

用 い た ガ ラ ス は NSF10(GVD:159.2 fs<sup>2</sup>/mm @800nm)である. 群速度分散β[ps<sup>2</sup>/km]と分散パラ メータD[ps/nm/km]との間には

$$D = -\frac{2\pi c}{\lambda^2}\beta\tag{1}$$

の関係がある.したがって,NSF10を用いた時の分 散パラメータDの値は式(1)より, $\lambda = 800$  nm とし て計算すると

$$D = -\frac{2\pi \times 3 \times 10^8 \text{m/s}}{(800 \times 10^{-9})^2 \text{m}^2} \times (-159.2 \times 10^{-30} \times 10^3 \text{s}^2/\text{m})$$
$$= 4.689 \times 10^{-4} \text{s/m}^2$$
$$= 468.9 \text{ps/(nm \cdot km)}$$

したがって,遅延時間 $\Delta t = 50 \text{ ps}$ ,波長帯域  $\Delta \lambda = 200 \text{ nm}, ロッドの長さ<math>l \text{ m}$ とすると,

$$D \times \Delta \lambda \times l = \Delta t \tag{2}$$

が成り立つので,各値を代入すると

## l = 0.533 m

となる.したがって,NSF10では533mmの長さで 50 psの遅延をつけることができる.ただし,本実 験ではNSF10を150mm(往復300mm)用いた.

続いて、実験セットアップについて順に説明する.

チャープパルス増幅器(chirped pulse amplifier: CPA) の光源(中心波長 800 nm, 繰り返し周波数 1 kHz. パルス幅 50 fs, 平均出力 450 mW)はポンプ光とプ ローブ光に2分割される.ポンプ光はフォノンを発 生するために用い、半長板で縦偏光にし、円筒レン ズによって線集光される.一方,プローブ光は中空 ファイバを通過後スペクトルは広帯域化され,単一 パルスにするために光学チョッパーで繰り返周波 数を低減させる. 広帯域化前後のスペクトルを Fig.3 に示す. さらに, 光学ガラス NSF10(往復長さ 300 mm, 群速度分散値 159.2 fs<sup>2</sup>/mm at 800 nm)によ って線形周波数チャープを付加される. その光源が LiNbO3を通り、ビームエキスパンダで2.5倍に拡 大されて分光器に入射, CCD の受光面にイメージ が投影される. CCD カメラは冷却 CCD カメラ BU-52LN/C(ビットラン株式会社)を用い、受光面は 15.16 mm×15.16 mm であり、ピクセル数は 2048× 2048, ピクセルサイズは 7.4 μm×7.4 μm である. 本セットアップの波長分解能は分光器の角度分散 (17.7 nm/mm)と CCD のピクセルサイズから計算で き、線形周波数チャープ量つまり波長-時間の対応 関係が分かれば,時間分解能は波長分解能から一意 に決まる.フォノンの観測は、フォノン伝播による ダイナミックな複屈折率変化を透過光の強度変化 に変換する偏光顕微鏡の原理で検出した.2枚 LiNbO3を入れているのは、一方はフォノンを発生

させるため、もう一方は1枚目のLiNbO3自身の複 屈折性を補償するためである.



Fig.3 Spectrum after hollow core fiber.

#### C.画像処理

CCD によって取得した画像は背景画像つまり, フォノンを発生させてないときの画像を引き算し, 明度・コントラストの調整を行っている.さらに各 波長での空間方向の光強度分布において最大強度 を求め、各波長の空間方向の光強度分布を,各波長 に対応する最大強度で割り算することによって正 規化を行った.さらに、波長方向のエッジ抽出を行 うため, Sobel フィルタ処理を行った.これらの画 像処理を行うことで.処理前よりもフォノンの見え る波長帯域が広げることができる.

### 3. 実験結果

#### A.PCF・高非線形ファイバ入射実験

SC-5.0-1040 のファイバを用いたとき,出射側の フォトダイオードで信号を検出していたが,信号が 不安定であり,ファイバへのカップリングがうまく いかなかった.これは CPA のピーク強度が高いた めに,4.8 µm の小さなコア径のファイバ入射が困難 であるからだと考えられる.CPA の繰り返し周波数 は1 kHz であるから,平均パワーを1 mW としても, 単位面積当たり 0.04 ×10<sup>6</sup> J/m<sup>2</sup> のエネルギーであ る.したがって,ファイバ入射は難しいと考えられ る.高非線形ファイバを用いたときは PCF のとき のように信号が不安定になることはなかったが,フ ァイバ出射側のビームプロファイルを観察したと ころ,スペクトルが最も広がっているときにはマル (a) (b)



Fig.4 (a)Beam profile with single mode.(b)beam profile with broadband spectrum.



Fig.5 Output spectrum.

チモードの伝搬が見られた.また、ガウシアン分布 になるようにファイバのアライメントを行うと逆 にスペクトルが狭まってしまうことがわかった. Fig.4 にそのときのビームプロファイルを、Fig.5 に そのときのスペクトルを示す. シングルモードの伝 搬が最も強くなるときに、スペクトルは最も広帯域 化するはずである. したがって、aの場合(ガウシ アン分布になっているとき) はシングルモードが最 も強くなっているのではなく,様々なモードが重な り合って,シングルモードのように見えているだけ だと考えられる.このファイバのカットオフ波長は 1320 nm であり, Fig.5 に見られる波長帯域ではマ ルチモードが伝搬している可能性は十分にあり、シ ングルモードのみ伝搬させるのは難しいと考えら れる. 一方で、シングルモードのファイバを用いる とコア径は小さくなってしまうため、CPA のパワー に耐えられないのと、安定に入射させることは難し いと考えられる.したがって,次節に述べる中空フ ァイバでスペクトル広帯域化を行い,光学ガラスで 分散を加える方法を用いることとした.

## B.フォノンポラリトン伝播の撮影

本実験セットアップによるフォノン伝播の撮影 結果を Fig.6 に示す.明度・コントラストの調整ま での画像処理を終えている状態である.このときの 時間窓は 28 ps,時間分解能は 19.1 fs である.得ら れた画像は Y 字型をしているが,Y の二つに分か れた上部(以下枝部)と根幹の下部(以下幹部)それぞ れについて,画像から速度を計算する.計算方法は 以下のとおりである.

変化の観測される部分の空間軸のピクセル数を $\Delta x$ 、 波長軸のピクセル数を $\Delta y$ とおくと、ピクセルサイ ズは  $6.7 \times 10^3$  mm であり、リレー系でサンプル面 を 2.5 倍に拡大して CCD カメラで撮影しているの で、サンプル面での変化量 $\Delta x_{sample}$ は

$$\varDelta x_{sample} = \varDelta x \times 6.7 \times 10^{-3} \times \frac{1}{2.5}$$

 $= \Delta x \times 2.68 \times 10^{-3} \text{ mm}$ 

である.一方、波長軸に関して,この分光器の角度 分散量は 17.7 nm/mm であるから,波長の変化量Δλ は

 $\Delta \lambda = \Delta y \times 6.7 \times 10^{-3} \times 17.7 \text{ nm}$ 

となり, さらにこの実験で用いた光学ガラス NSF10 の群速度分散量は 468.9 ps/(nm·km)であり, ガラス の長さは  $300 \times 10^{-6}$  km であるから,時間変化量 $\Delta t$ は

 $\Delta t = \Delta \lambda \times 468.9 \times 10^{-12} \times 300 \times 10^{-6} \text{ sec}$ 

 $= \Delta y \times 16.7 \times 10^{-15} \text{sec}$ 

となる.よって画像から求めた速度 $v_{img}$ は

$$v_{img} = \frac{\Delta x_{sample}}{\Delta t} = \frac{\Delta x}{\Delta y} \times 0.16 \times 10^{12} \text{ m/sec}$$

である.この式から計算を行った結果,枝部は7.68 ×10<sup>7</sup> m/s,幹部は1.22×10<sup>7</sup> m/sとなった.LiNbO<sub>3</sub> 中のフォノンの伝播速度の理論値は4.6×10<sup>7</sup> m/sで あるから,枝部はフォノンであると考えられる.一 方,幹部はポンプ光がLiNbO<sub>3</sub>の表面から背面まで 伝播していく様子であると仮定をし,幾何学的に速 度を計算した.Fig.7 にフォノン伝播の様子を図示 する.ポンプ光は実際には75度の角度を持って媒 質中を伝播するので,その速度vはLiNbO<sub>3</sub>の屈折 率 2.2168 も考慮すると

$$v = 1.22 \times 10^7 \times \frac{1}{\cos 75^\circ} \times 2.2168$$

# $= 1.04 \times 10^8 \text{ m/s}$

となる.真空中の光速は 3.0×10<sup>8</sup> m/s であるから, 幹部はフォノンではなくポンプ光の伝播を捉えた ものではないかと考えられる.





Fig.6 One pulse imaging of phonon propagation NSF10 (300 mm).



Fig.7 Propagation of phonon polariton

# C.画像処理

正規化・フィルタ処理後の結果を Fig.8 に示す. これらの画像処理を行うことによって,処理前より もフォノンの見える波長帯域が広がった.また,画 像処理によって Y 字の枝部の端が若干歪んでいる ことがわかった.つまり,周波数チャープが線形に なっていないということである.現在は波長と時間 の対応関係は光学ガラスの分散量から求めている が,この結果から高次の分散が乗っているため, SPIDER などを用いて位相を測定する必要があるこ とがわかった.



Fig.8 Image after image processing

# 4. まとめ

フォノン伝播を観測対象とし,時間窓 28 ps,時 間分解能 19.1 fs と設定したストリークイメージン グの構築を行い,フォノンの伝搬を単一パルスで連 続的に撮影をすることができた.さらに、画像処理 によって波長毎の光強度差を抑えることができた. 最終的に得られた画像から周波数チャープが線形 ではないことがわかり,今後の課題としては位相を SPIDER などで正確に測定することが挙げられる.

# Reference

- [1] 中川さんの論文
- [2] Goda K., Tsia K. K., Jalali B.: Nature458,1145-1149 (2009)