緑色・青色 InGaN 半導体レーザ励起モード同期 Ti:sapphire レーザの高出力化

Power scaling of mode-locked Ti:sapphire laser directly pumped with green and blue diode lasers

澤田 亮太 (B4), 田中 裕樹 (M2), 狩山 了介 (M1), 保坂 有杜 (M1)

Ryota Sawada, Hiroki Tanaka, Ryosuke Kariyama, Aruto Hosaka

Abstract

We demonstrate a mode-locked Ti:sapphire laser pumped with green and blue diodes lasers. An max output power of 45mW is achieved in mode-locking with a SESAM (Semiconductor saturable absorber mirror).

1. はじめに

Ti:sapphire (Ti:Al₂O₃)結晶は 660 nm から 1180 nm と非常に広い利得幅を持つ最も広く用いられてい る波長可変レーザー媒質であり,その最短パルス幅 は 3 fs 以下と他の利得媒質を凌ぐものである. 1982 年に初めて実験的にレーザ媒質として使用可能で あることが実証されてからは現在までに精密分光, フェムト秒化学,生物学的医薬品,テラヘルツ波発 生など科学分野を支えてきた.一般的な Ti:sapphire レーザの励起光源にはアルゴンイオンレーザや Nd:YVO4 及び Yb ファイバーレーザの第二高調波 が用いられる.しかし,これらの励起光源を用いる ことで Ti:sapphire レーザは高価かつ装置は大きな ものになり,実験装置としてより広く普及されるた めには安価かつコンパクトである新たな励起光源 が必要である.

近年, 青色 InGaN 半導体レーザ (Laser diode, LD) の高出力化に伴い, LD 直接励起 Ti:sapphire レーザ による超短パルス発生が実現されており, 安価かつ 小型化されたモード同期 Ti:sapphire レーザ装置の 実現が可能となりつつある. 同じく近赤外の超短パ ルスレーザの利得媒質には Cr:LiSAF, Cr:LiSGaF, Cr:LiCAF などのいわゆるクロムドープコルキライ ト (Cr:Colquiriites)結晶があり、これらについても LD 直接励起超短パルス発生が既に実現している. しかし、Ti:sapphire 結晶の高出力に耐え得る優れた 熱伝導性や高利得を得ることが可能な誘導放出断 面積の大きさなどを考慮すると、依然として Ti:sapphire 結晶の優位性は傑出している.

本研究室でも 2012 年に波長 451 nm, 3.5 W 高出 力青色半導体レーザで Ti:sapphire 結晶を励起し, チ ャープミラーを用いて分散補償を行うことでモー ド同期動作を達成している[1]. また,翌年には Ti:sapphire 結晶の吸収ピークにより近い波長であ る,518 nm の1 W 高出力緑色半導体レーザを励起 光源に用いたモード同期動作を実現している[2].

本研究では、励起光源に緑色半導体レーザ2台, もしくは緑・青色半導体レーザを1台ずつ用いて励 起出力を拡張することでモード同期 Ti:sapphire レ ーザの高出力化を目的としている.また、先行研究 よりも結晶長を短く[3]、励起光のスポットサイズ を小さく設計することによって発振閾値を下げ、か つモード整合を良くしようと試みた.また、高出力 化のためには励起出力を上げた際の SESAM (Semiconductor saturable absorber mirror)での集光特 性、共振器内分散の変化、SESAM を用いない Kerr lens mode-locking (KLM)の可能性に関する知見も重 要である.

2. 実験セットアップ

Fig. 1 に緑色半導体レーザ 2 台励起 Ti:sapphire レ
 ーザの実験セットアップを示す. 励起光源には最大
 出力 1 W の緑色 InGaN 半導体レーザ (日亜化学工)

業製)を2台用いた.動作波長はそれぞれ 518 nm, 520 nm であり、エミッタサイズとビームの広がり 角から計算されるビーム品質 $M^2 = 1.3 \times 5.1$ である. 各 LD から出射されたビームは、シリンドリカルレ ンズによって遅軸方向に広げてレンズで集光する ことで、結晶両側からの励起を行っている. Ti:sapphire 結晶はブリュースターカット, チタンド ープ率 0.25 wt%, FOM = 200, 結晶長 2.5 mm (Castech 製)のものを用いた.分散補償はチャープミ ラー (Layertec 製)2 枚によって行い, 平面・凹面チ ャープミラーで 1 回反射あたりに付与される群遅 延分散 (GDD, group delay dispersion)はそれぞれ -150±30 fs²と-120±40 fs²である.結晶両サイドの ダイクロイック凹面鏡対と SESAM への集光に用い られる凹面チャープミラーの曲率半径は 50 mm, ま た, 取り出し鏡 (OC, output coupler)の透過率は 2.5%である.もう片方のエンドミラーにはCW動 作の際は高反射鏡 (HR, high reflection mirror)を用 い,モード同期動作の際は SESAM を用いている. SESAM の反射率は非飽和時, 飽和時でそれぞれ 99%, 99.5%, 回復時間は 1~10 ps, 飽和フルエン スは 30~50 µJ/cm² である. 共振器長は 1.2 m である.

Fig. 1 Schematic of Ti:sapphire laser pumped directly with double green diode lasers.

Fig. 2 に緑・青色半導体レーザ励起 Ti:sapphire レ ーザの実験セットアップを示す. 励起光源には Fig.
1 の緑色 InGaN 半導体レーザ (518 nm)と最大出力
3.5 W 青色 InGaN 半導体レーザ (日亜化学工業製)
を用いた. 青色 LD の波長は 451 nm であり, ビー ム品質 $M^2 = 6.1 \times 14.5$ である.各 LD から出射され たビームはシリンドリカルレンズによって遅軸方 向に広げた後,ダイクロイックミラーによって合波 されている.共振器長は 1.2 m であり,共振器内の ミラーは Fig. 1 に GDD -60 fs²の平面チャープミラ ー (Newport 製)を加えた条件となっている.Fig. 1, Fig. 2 において,励起光の結晶中でのスポット半径 は緑色 LD が 6×22 μ m,青色 LD が 6×20 μ m であ り,共振器モードとのモードマッチングはそれぞれ 63 %,43 %である.凹面ミラーでの折り返し角度 は非点収差を考慮して 8°とした.

Fig. 2 Schematic of Ti:sapphire laser pumped directly with green and blue diode lasers.

3. 実験結果

3.1 緑色 LD 2 台励起 Ti:sapphire レーザ

本実験において, CW 動作および SESAM を用い たモード同期動作を達成した. CW 動作では最大吸 収パワー1084 mW のときに最大出力 93 mW を得た. 発振閾値は 205 mW, スロープ効率は 10.4 %であっ た. このときの入出力特性を Fig. 3 に示す. 青色 LD 励起 Ti:sapphire レーザの先行研究では, Roth ら が結晶長 5.2 mm の Ti:sapphire 結晶と出力 1 W の LD 2 台を励起光源に用いて, CW 動作で最大出力 159 mW を達成している[3]. Roth らの実験結果では 発振閾値 480 mW, スロープ効率 11.2 %, 吸収パワ ー1800mW である. 我々の実験と比べると, 発振閾 値とスロープ効率は同程度であるが, 吸収パワーに おいて大きく異なっている.これはモードマッチン グを良くするために結晶長を先行研究よりも短く したことが原因である.この吸収パワーの差によっ て,先行研究を超える出力を得ることが出来なかっ たと考えられる.

Fig. 3 Plot of output power of Ti:sapphire laser pumped with green diode lasers in CW operation.

SESAM を用いたモード同期動作では, Fig. 4 に 示すように最大出力 45 mW, スロープ効率 6.8%と いう結果を得た.シングルパルス発振であり、繰り 返し周波数は 121 MHz であった. Fig. 4 において, 点線より右側でモード同期動作を観測することが できた. このとき, Fig. 5 に示すように中心波長 806 nm, スペクトル幅 10.4 nm (FWHM)であった. また, 出力 45 mW でモード同期が掛かっている状態から 励起光出力を下げていったときのスペクトル変化 を観察した結果を Fig. 6 に示す. スペクトルは励起 光出力に対応して狭くなっていくことから,パルス のピークパワーに依存する自己位相変調によって スペクトルが変化していることがわかる.モード同 期が外れた時点でスペクトルは短波長側に移動し ており、今回の実験ではモード同期動作は CW 成 分の利得が高いスペクトルの範囲とは別の場所で 起こることも確認できた.これはモード同期時の発 振波長が SESAM によって選択されているためだと

考えられる.

Fig. 4 Plot of output power of Ti:sapphire laser pumped with green diode lasers in mode-locked operation.

Fig. 5 Spectrum of output pulses at maximum output power.

Fig. 6 Spectrum transition corresponding to input power.

自己相関波形はオートコリレータ (Scanning Autocorrelator MODEL 750, FEMTOWAVE 製)によ り測定した.このときの自己相関波形を Fig. 7 に示 す.フリンジ分解自己相関波形より背景強度値と最 大強度値の比が 1:8 であり FTLパルスであることが わかる.また,フリンジ分解自己相関波形のパルス 幅は 114 fs であり, sech²型 FTLパルスを仮定する と,その時間幅は 74 fs (FWHM)となる.一方,ス ペクトル幅 10.4 nm から求められる sech²型 FTL パ ルスの時間幅は 66 fs となり,自己相関波形から求 まる時間幅とおおよそ一致した.

Fig. 7 Interferometric autocorrelation of the pulses at maximum output power.

3.2 青・緑色 LD 励起 Ti:sapphire レーザ

本実験においても、CW 動作および SESAM を用 いたモード同期動作を達成した.CW 動作では最大 吸収パワー2121 mW のときに最大出力 82 mW を得 た.このときの入出力特性を Fig.8 に示す.Fig.8 において、励起光出力を青色 LD から下げていった 場合と緑色 LD から下げていった場合で入出力特性 が異なっている.Table 1 に励起光の特性を示す. 青の励起光のスロープ効率は、緑の励起光のスロー

すの励起光のスローク効率は、緑の励起光のスロー プ効率とそれぞれの量子効率、モードマッチングの 比率から求めることが出来る.このとき求められる 青の励起光のスロープ効率は 6.1%であるが、実験 的に得られたスロープ効率は3.7%であり,量子効 率やモードマッチングを考慮した上でさらなるス ロープ効率の減少が観測された.この原因として, Roth らが指摘した励起誘起吸収の影響が考えられ る[4].これによって緑2台励起の実験よりも吸収 パワーが大きいにもかかわらず,CWで最大出力 82 mW と緑2台励起の93 mW よりも悪い結果にな った.

モード同期動作では,最大出力 34 mW でシング ルパルス発振が観測された.このときの Fig.9 に示 されるように,スペクトル幅は 11.4 nm であった. これ以上出力が高くなるとマルチパルスになり,安 定的なモード同期が得られなかった.このマルチパ ルス化は,励起光が強くなったことによって自己位 相変調の効果が強くなったことや,SESAM での集 光が強すぎることなどが原因として考えられる.

Fig. 8 Plot of output power of Ti:sapphire laser pumped with green and blue diode lasers in CW operation.

	CW	
	Green	Blue
Slope efficiency (%)	8.4	3.7
Quantum efficiency (%)	518/800	451/800
Spot size [radius] sagittal × tangential (μm)	6 × 18	18 × 19
Mode-matching (%)	68	57
Max. Output power (mW)	82	

Table 1 Characteristic of green and blue pump beams

Fig. 9 Spectrum of output pulses at maximum output power.

4. まとめ

緑色・青色 LD を用いた LD 直接励起 Ti:sapphire レーザの高出力化に成功した. 短い結晶を用いるこ とで, 閾値を下げつつもモードマッチングを良くす ることができた. 励起光出力を上げた場合, SESAM での集光が強くなることや自己位相変調の効果が 大きくなる影響でマルチパルス化することがわか った.

References

- S. Sawai et al. "An InGaN diode-laser pumped Ti:Sapphire laser." ALPS' 13, Yokohama, Apr.23 -25 (2013).
- [2] S. Sawai, et al. "Demonstration of a Ti:sapphire mode-locked laser pumped directly with a green diode laser." Appl. Phy. Express 7, 022702 (2014).
- [3] PW. Roth et al. "Power scaling of a directly diode-laser-pumped Ti: sapphire laser." Opt. Express 20, 20629 (2012).
- [4] PW. Roth et al. "Directly diode-laser-pumped Ti: sapphire laser." Opt. Lett. 34. 3334 (2009).