SF-STAMP 光学系を用いた超高速2次元バーストイメージングの性能拡張

および微分干渉顕微光学系の構築

Improvement of ultrafast 2D-burst imaging method by

Sequentially Timed All-optical Mapping Photography utilizing Spectral Filtering (SF-STAMP)

and construction of differential interference contrast microscopy system

鈴木 敬和 (M1), 肥田 遼平 (B4), 植田 隆太 (B4), 伊佐 文宏 (M2)

Takakazu Suzuki, Ryohei Hida, Ryuta Ueda, Fumihiro Isa

Abstract

We improve a system performance of STAMP (Sequentially timed all-optical mapping photography) for single shot ultrafast 2D-burst imaging. A Newly developed SF-STAMP system is composed of a diffractive optical element (DOE), a band-pass filter, and two Fourier transform lenses. Using a 25-beam generating DOE, the total number of frames in a single-shot increases up to 25. We capture ultrafast phenomena with sub-picosecond temporal resolution using a frequency-chirped broadband pulse.

1. はじめに

超高速現象の解明のために、ポンプ・プローブ法や ストリークカメラの利用などの時間分解計測法が 広く利用されている.しかし、ポンプ・プローブ計 測法は繰り返し計測を要するため、単発現象やラン ダム現象を正確に計測することは困難である.一方 でストリークカメラは単発現象を連続的に計測可 能ではあるが得られる情報は 1 次元情報のみであ る.近年,2 次元超高速撮像法として STEAM [1], CUP [2], STAMP [3]が考案され、ナノ秒オーダの連 続撮影やピコ秒領域のシングルショットバースト 撮影が実現されている.

現在のところ,STAMP 法は世界最高速のシャッ ター速度を実現するシングルショット連写撮影手

法でありサブピコ秒の時間分解能を有する.この手 法では,線形周波数チャープパルスを光源として利 用し,波長分散の大きさによって各瞬時周波数ごと の遅延時間を対応させることで「周波数-時間」の 対応関係を得る. さらにこの瞬時周波数を時間軸に 対応させるアイデアに加え,各周波数成分を単一の イメージセンサ上に空間的にマッピングすること でシングルショット 2 次元バースト撮影が可能に なる.しかし、空間マッピングを行うために特殊な ペリスコープアレイ構造を持つ 4f イメージング光 学系[3, 4]が必要になる. このペリスコープアレイ の数が STAMP の撮影可能コマ数を決定するので現 在のところ STAMP の同時撮影スナップショットの コマ数は6枚である.昨年,我々はSTAMPの撮影 枚数をより容易に増加させる手法として STRIPED FISH [5]のアイデアを STAMP に応用した STAMP utilizing Spectral Filtering (SF-STAMP) [6]の原理実証 を行った(同時撮影枚数:5 枚). 本研究では, SF-STAMP 光学系を改良し 25 枚同時シングルショ ット撮影を実現する.また,微分干渉顕微光学系を 構築し SF-STAMP 光学系と組み合わせることで超 高速位相差イメージングを行う.

2. SF-STAMP

SF-STAMP 光学系の概要図を Fig. 1 に示す. SF-STAMP 光学系は、2 枚のレンズ、DOE (回折光 学素子)、BPF (Band-pass filter)から構成される 4f 結 像光学系である. Object 面のイメージが1枚目のレ ンズ (焦点距離 fi) で光学的にフーリエ変換され, DOE を配置する面がフーリエ面になる. その後, DOE で複製されたアレイビームは傾けて配置した BPF に異なる角度で入射することで波長選択が行 われ2枚目のレンズ (焦点距離 f2) によって光学的 に逆フーリエ変換される. その結果, Image 面に配 置した CCD の受光面上に空間的に分散した 2 次元 のマルチスペクトラルイメージが同時に結像され る. したがって, STAMP 同様に, フラッシュ光に 線形周波数チャープパルスを用いることで, CCD 面上で結像されるマルチスペクトラルイメージは 時間差の付いたスナップショット画像となり、フラ ッシュ光1パルスが BPF で選択される長波長端か ら短波長端までの波長帯域幅に対応する時間幅を 計測時間窓とするシングルショット超高速バース ト撮影が実現される [6]. Fig. 2 に示すように, SF-STAMP の同時撮影コマ数は DOE から分岐する アレイビームの数により決定する.したがって, SF-STAMP システムはペリスコープアレイを利用 するSTAMPシステムよりも簡素かつ柔軟性をもつ.

以下では、25 ビーム分岐 DOE の設計、25 スペク トラルイメージ同時撮影 SF-STAMP 光学系の構築、 微分干渉顕微光学系の構築について述べる.

Fig. 1. Schematic setup of SF-STAMP.

Fig. 2. Comparison of the mechanism of 2D-burst imaging in STAMP and SF-STAMP (TMD: Time Mapping Device, SMD: Spatially Mapping Device).

3. 実験セットアップ

3.1. 25 ビーム分岐 DOE の設計

SF-STAMP による同時撮影枚数を増加させるため に新たに 25 ビーム分岐 DOE を作製した. 原理実証 を行った 5 コマ SF-STAMP 光学系では市販の 5 ビ ーム分岐 DOE (HOLOEYE, DE 225, 回折広がり角 10.2° @800 nm) を用いた.

今回は、分岐ビーム数および回折広がり角を拡大 し、同時撮影枚数および1ショットにおける波長選 択幅(計測時間窓に相当)の拡大を目指しFig.3に示 す特性をもつDOEを特注した...

Fig. 3. Specification of 25-beam generating DOE (@800 nm).

25 ビーム分岐 DOE の波長 800 nm における回折広 がり角は 25.6°である. このパラメータは入手可能 な大口径 CCD イメージセンサの受光面の大きさ (36.1 mm × 24.0 mm) に収まるように決定した (Fig. 4).

Fig. 4. Schematic of 25 beams on the widest CCD plane.

3.2. 25 スペクトラルイメージ同時撮影 SF-STAMP光学系の構築

SF-STAMP による同時撮影枚数を増加させるため に設計した 25 ビーム分岐 DOE (HOLOEYE, customized model),大口径冷却 CCD (BITLAN, BU-55LN)を使用した.受光面のサイズは 24.0 mm × 36.1 mm,ピクセルサイズは 7.4 μ m × 7.4 μ m,総ピ クセル数は 4872 × 3248 である.基本的な SF-STAMP 光学系の構成は Fig. 1 と同様である.し たがって,サンプルの情報を含んだ線形周波数チャ ープパルス (プローブ光)が1枚目のレンズ (f=50 mm)を伝搬し,DOE により 5 × 5 = 25 個のアレイ ビームに複製され,中心波長 830 nm,スペクトル 幅 2.2 nm (FWHM)の BPF (IRIDIAN, ZX000167) で波長選択された後,2枚目のレンズ (f=50 mm) により冷却CCDの受光面上の異なる位置に 25 波長 分のスペクトラルイメージが結像される. Object 面 に USAF テストターゲットを置いた際に得られる 25 スペクトラルイメージを Fig. 5 に示す. 各スペク トラルイメージは 450 × 450 ピクセルを占める.

Fig. 5. A multispectral image captured by SF-STAMP system which contained 25 different spectral band images.

3.3. 微分干渉顕微光学系の構築

SF-STAMP による超高速位相イメージングを実現 するために微分干渉顕微鏡 (Differential Interference Contrast microscopy: DIC)の原理に基づいた顕微光 学系の構築を行った. Fig. 6 に DIC の原理を示す.

Fig. 6. Principle of differential interference contrast microscopy.

基本的な構成は,明視野顕微光学系を偏光子とウォ ラストン(DIC)プリズムで挟まれた構成である.1 枚目の偏光子で斜め偏光になった光は DIC プリス ムで直交する二つの直線偏光成分に分離する.その 後サンプルの極わずかに異なった位置を通過し,2 枚目の DIC プリズムで合波し,2つの経路の屈折率 差を位相差に変換する.DIC プリズムには OLYMPUS 社製 U-DICR を使用した.

また,SF-STAMP 光学系は 4f 結像光学系がベー スになっているため Object 面に像を転写すること で,本実験で構築した微分干渉顕微光学系とのア レンジが可能である.Fig.7にセットアップを示す.

3.4. 1ショット 25 枚同時バースト撮影

Fig. 8. Experimental setup of ultrafast imaging by SF-STAMP (BS: beam splitter, HCF: hollow-core fiber filled with Ar-gas, DOE: diffractive optical element, BPF: band-pass filter).

SF-STAMP による超高速イメージングの実験セッ トアップを Fig. 8 に示す. 25 コマ光源にはモードロ ック Ti:Sapphire レーザをチャープパルス増幅器 (CPA) により増幅したフェムト秒レーザパルス (中心波長 800 nm, スペクトル幅 20 nm, パルス幅 50 fs, 平均出力パワー 1.1 W, 繰り返し周波数 1 kHz) を用いた. 広帯域パルスを得るために, 集光 レンズ (f = 400 mm) で Ar ガス封入中空ファイバ (ファイバ長 400 mm, コア径 126 μ m) に入射させ, 自己位相変調により広帯域化 (>200 nm) させた. その後, 光学ガラス (N-SF10 ($D_{\text{N-SF10}} = -468.9$ ps/km·nm), BK7 ($D_{\text{BK7}} = -149 \text{ ps/km·nm}$)) を用いて 線形周波数チャープを与え, パルス幅を伸張し, プ ローブ光として利用した. また, ポンプ光には中空 ファイバの手前で分けた CPA から出射される FTL パルスを使用した. なお, シングルショット撮影の ために光学チョッパおよびシャッターをポンプ光 とプローブ光に分離する手前に用いて単パルスを 切り出した.

4. 実験結果

改良した SF-STAMP を用いて,薄膜ガラス (厚さ 50 µm) 内部にポンプ光を集光させ,透明材料の内 部屈折率変化の超高速ダイナミクスのシングルシ ョット 25 コマ超高速撮影を行った. プローブ光の 広帯域パルスには光学ガラスを伝搬させることで $D \times z = 0.14$ (ps/nm) の線形チャープを加えた. 今回 新たに用いた 25 ビーム分岐 DOE と BPF の組合わ せで実現できるシングルショットの波長帯域幅は $D/_{window} = 40$ nm (Fig. 9 参照, 785 nm~825 nm) であ り,時間窓は 5.6 ps, フレーム間隔は 0.2 ps となる.

SF-STAMP の 1 ショットで得られる波長帯域幅 を D/_{window}とすると,計測時間窓 DT は Eq.(1) で 表現される.

$$\mathsf{D}T = D \times z \cdot \mathsf{D}/_{\mathrm{window}} \tag{1}$$

ただし, *D* (ps/km・nm) は分散パラメータ, *z* (km) は分散媒質の長さである.したがって,計測時間窓は, フラッシュ光に付加する線形周波数チャープ量 (2 次 分散量) *D*×z (ps/ nm) により可変となる. 今回の BPF1 枚のみによる波長帯域幅は~40 nm であるが, 1 パルスの時間幅を少ない 2 次分散量で伸張させるた めには,波長帯域幅 D/_{window}の広い広帯域パルスが有 用になる.

Fig. 10 に内部屈折率変化の超高速ダイナミクスの シングルショット 25 コマ撮影の結果を示す.なお, 各波長イメージは 740 × 480 ピクセルであり,結果に 示した画像はいずれも変化前との差分を取り,コント ラストを調整したものである.計測時間窓 5.6 ps の間 に集光点付近にプラズマフィラメントが形成される 様子が観測され,SF-STAMP の撮影枚数の増加が実現 された.

Fig. 9. Spectral properties of broadband pulse and 25-frame SF-STAMP system.

Fig. 10 Measured images of generation of a plasma filament inside a glass (single-shot time window of 5.6 ps).

5. まとめ

本研究では、シングルショット超高速2次元バース トイメージングを実現する SF-STAMP の性能拡張 および25コマ同時撮影の原理実証を行った.使用 するDOEを25ビーム分岐DOEに変えたことによ り1ショットで利用できる波長帯域幅は40 nmまで 拡大した.しかし、単独のBPFでは広帯域線形周 波数チャープパルスの周波数成分を存分に利用で きていないので今後は、BPFアレイを用いて25ビ ームの波長を個々に選択し波長帯域幅は~150 nm (810 nm~666 nm)の実現を目指す.波長帯域幅が拡 大することで計測時間窓も拡大するので、広帯域パ ルスにチャープを与えることでサブナノ秒 (10⁻¹⁰ s) 程度までの計測時間窓が可能である.

References

- K. Goda, K. K. Tsia, and B. Jalali, "Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena," Nature 458(7242), 1145 (2009).
- L. Gao, J. Liang, C. Li, and L. V. Wang, "Single-shot compressed ultrafast photography at one hundred billion frames per second," Nature 516(7529), 74 (2014).
- K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, "Sequentially timed all-optical mapping photography (STAMP)," Nat. Photonics 8(9), 695 (2014).
- K. Hashimoto, H. Mizuno, K. Nakagawa, R. Horisaki, A. Iwasaki, F. Kannari, I. Sakuma, and K. Goda, "High-speed multispectral videography with

a periscope array in a spectral shaper," Opt. Lett. **39**(24), 6942 (2014).

- P. Gabolde and R. Trebino, "Single-frame measurement of the complete spatiotemporal intensity and phase of ultrashort laser pulses using wavelength-multiplexed digital holography," J. Opt. Soc. Am. B 25(6), A25 (2008).
- T. Suzuki, F. Isa, L. Fujii, K. Hirosawa, K. Nakagawa, K. Goda, I. Sakuma, and F. Kannari, "Sequentially timed all-optical mapping photography (STAMP) utilizing spectral filtering," Opt. Express 23(23), 30512 (2015).