マイクロレンズアレイによる面分光手法を応用した

高光利用効率な超高速コマ撮りシングルショットイメージング手法の開発

Development of a single-shot ultrafast burst imaging method with higher light utilization efficiencies using

imaging field spectroscopy with a microlens array 根本 寛史 (M2), 鈴木 敬和 (D3), 糸山 翔太(B4) Hirofumi Nemoto, Takakazu Suzuki, and Shota Itoyama

Abstract

To increase the number of frames and improve light throughput in SF-STAMP, we applied a snapshot imaging spectroscopy method using a microlens array (MLA) and an angle dispersive element to STAMP. We obtained single-shot burst images of femtosecond laserinduced ablation process on the glass surface by this new STAMP with a frame interval of 300 ps and a 1.8-ns time window. The number of frame was limited to 7 with the present 60x60 microlens array.

1. はじめに

従来の電子的高速カメラで追随できないナノ秒 領域以下の非反復現象を捉える手法として,線形周 波数チャープレーザ光パルスと光学的フーリエ変 換を応用した超高速コマ撮り計測法 STAMP [1], と SF-STAMP [2]がある. SF-STAMP では,回折光学素 子 (DOE)によるビーム複製と波長選択フィルタ (BPF)を組み合わせた多波長同時撮影装置を利用す ることで, DOE のビーム複製数に対応する 25 枚 連写撮影が実現している.また,回折格子とミラー 対を用いて自由空間でパルス幅の伸張を行う光学 系 (FACED) [3]により生成した波長掃引パルス列 を照明光に用いることで、SF-STAMPの撮影時間窓 をナノ秒領域まで拡大することに成功している.し かし, SF-STAMP では, ビームを複製してから波長 選択を行うという特性上,撮影枚数の増加とともに, 照明光の光利用効率が低下するという課題がある. また, FACED の中心波長走査型パルス列と BPF の波長選択性との整合性において課題がある.

本研究では、撮影枚数と光利用効率改善のため、 マイクロレンズアレイ(MLA)と角度分散素子を利 用したスナップショットイメージング分光法であ る面分光の手法 [4]を STAMP のスペクトル分割に 応用し、高い光利用効率で画像情報の時空間分解を 実現するシングルショット撮影法 (STAMP utilizing Lenslet array, LA-STAMP)を開発した.

2. LA-STAMPの設計・構築

本研究では、レーザー光源の帯域において、シン グルショット撮影に十分な強度を有し、かつ、強度 差が小さい 803~811 nm の帯域において、7 枚の連 写撮影を実現できるように、LA-STAMP の設計・構 築を行った.構築したセットアップを Fig.1に示す. 測定対象のイメージは、結像レンズによって、 MLA(60x60)上に結像し、各レンズによって空間的 にサンプリングされ、焦点面にアレイ状のスポット を形成する.各レンズから出射したビームは、コリ メートレンズによって平行光となり、回折格子に入 射する.回折格子によって波長分散を受けた各ビー ムは、結像レンズを通過し、スペクトル分解された スポットがカメラ上に結像される.

Fig.1 (a) Setup of LA-STAMP, (b) Specification of MLA

3. 波長掃引パルス列の生成

ナノ秒時間窓での単発撮影を実現するため構築 した,中心波長の異なる遅延パルス列(波長掃引パ ルス列)を生成する FACED 光学系を Fig. 2 に示す.

Fig. 2 Schematic setup of spectrally sweeping pulse train generating system

波長毎に異なる入射角で非平行ミラー対に入射 した光は、多重反射後に異なる遅延時間をもって戻 り、再び回折格子よりほぼコリメートされる.ミラ ー対(FACED)と4f-光学系、回折格子を含めた超高 速イメージングのための波長掃引パルス列生成光 学系を、4f-FACEDと呼ぶ.803~811 nmの帯域のみ を抜き出すため、4f-FACEDシステムのフーリエ面 にスリットを配置し、スペクトルの狭帯域化を行っ た.FACEDを利用した時間幅伸長では、入射光路 と出射光路が一致するのは、入射角がミラー対の角 度ずれの整数倍である波長成分のみであり、その他 の波長成分では、完全には一致しない.Fig.3 に FACED 出射後の伝搬の様子を示す.

Fig. 3 Schematic diagram of propagation of spectrally sweeping pulses

FACED 出射後の伝搬方向は波長成分ごとに僅か に異なるため、伝搬するにつれて空間的に分離する とともに、伝搬経路の違いによる光路長の違いから、 サンプル面において時間的なずれが生じる.この FACED の特性によって生じる、反射回数が同じ波 長成分間での時間的なずれが、各パルスの実効的な パルス幅となり、シングルショット撮影における時 間分解能となる.FACED から出射したパルスの空 間的にずれた成分をカットするため、回折格子から 200 mm の位置に開口 4 mm のスリットを配置し、 波長選択を行った.波長選択した後の FACED 出射 パルスのスペクトルを Fig.4 に示す.

Fig. 4 Spectrum of spectrally sweeping pulse train

2枚のスリットにより,狭帯域化,離散化したス ペクトルを得た.番号を示したスペクトルが,波長 掃引パルス列の中心スペクトルに対応し,各パルス のパルス間隔が,シングルショット撮影のフレーム 間隔に対応する.光線追跡シミュレーション (codeV)によって,照明光に用いた波長掃引パルス 列のパルス幅,LA-STAMP 計測の露光時間,フレー ム間隔を求めた結果を Table 1 に示す.XFROG を 用いた計測からも約 20 ps が露光時間であること がわかった.

Pulse number	1 st	2 nd	3 rd	4 th	5 th	6 th	7 th
Pulse width	26.3 ps	27.4 ps	28.5 ps	29.0 ps	30.1 ps	31.1 ps	31.6 ps
Exposure time	18.7 ps	18.8 ps	19.0 ps	18.8 ps	19.0 ps	19.1 ps	19.0 ps
Frame interval		303.6 ps	303.6 ps	303.7 ps	304.0 ps	303.4 ps	303.4 ps

Table 1Characteristics of probe laser pulses generated by 4f-FACED optics.

4. LA-STAMP 光学系によるシングルショット 2

次元バーストイメージング

4.1. マルチスペクトラルイメージング

生成した波長掃引パルス列を照明光に用いて, USAF-1951 テストターゲット (Newport 社製, RES-1)を撮影,マルチスペクトラルイメージを再構成 した結果を Fig.5 に示す.イメージは顕微光学系で 50 倍に拡大して取得した.また,全ての画像は, CCD カメラで取得できる分光されたスポットのイ メージから,各波長のスポットにおいて,中心を含 む,5×5 pixel の光強度を積算して同じ波長成分の 本研究では,スポットを MLA の 60x60 空間に配

列することによって,画像の再構成を行った.

撮影したテストターゲットは 4.4 µm 間隔の構造 であり,縦方向,横方向共にターゲットの構造を分 離できたため,空間分解能は 4.4 µm 以下と評価で きた.

Fig. 5 A multi-spectral image captured by SF-STAMP system with spectrally sweeping pulse train

Fig. 5 内に示した番号は, Fig. 4 のスペクトルに 示した番号に対応している.

4.2. シングルショットバーストイメージング

LA-STAMP によるシングルショットイメージン グの実験セットアップを Fig.6 に示す. 光源には増 幅した Ti:Sapphire レーザパルスを用いた. 励起光 にはその 2 倍波を使用し, プローブ光には 4f-FACED で生成した波長掃引パルス列を用いた. Fig. 7 に薄膜ガラス表面におけるアブレーション過 程を 300 ps のフレーム間隔で 1.8 ns にわたってシ ングルショット撮影した結果を示す. アブレーシ ョンプルームの過渡イメージが所得できており, LA-STAMP の原理実証ができた. MLA のレンズ サイズを小さくしアレイ数を増加させることで分 解能は 1 μm まで改善できる予定である.

5. まとめ

マイクロレンズアレイと角度分散素子を利用し たスナップショットイメージング分光法である面 分光の手法をシングルショット超高速 2 次元バー ストイメージング手法である STAMP のスペクトル 分割に応用することによって,高い光利用効率でサ ブナノ秒現象をシングルショット撮影可能な装置 (LA-STAMP)を開発した.

References

- K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, "Sequentially timed alloptical mapping photography (STAMP)," Nat. Photonics 8, 695–700 (2014).
- T. Suzuki, F. Isa, L. Fujii, K. Hirosawa, K. Nakagawa, K. Goda, I. Sakuma, and F. Kannari, "Sequentially timed alloptical mapping photography (STAMP) utilizing spectral filtering," Opt. Express 23, 30512 (2015).
- J.-L. Wu, Y.-Q. Xu, J.-J. Xu, X.-M. Wei, A. C. Chan, A. H. Tang, A. K. Lau, B. M. Chung, H. Cheung Shum, E. Y. Lam, K. K. Wong, and K. K. Tsia, "Ultrafast laser-scanning timestretch imaging at visible wavelengths," Light Sci. Appl. 6, e16196–e16196 (2017).
- A. Boniface, I. Gusachenko, K. Dholakia, and S. Gigan, "Rapid broadband characterization of scattering medium using hyperspectral imaging," Optica 6, 274 (2019).

Fig. 6 Experimental setup of single shot imaging by LA-STAMP

Fig. 7 Measured images of femtosecond laser-induced ablation process on the glass surface