テラヘルツ波領域シングルショット2次元ハイパースペクトルイメージングの

ためのヘテロダイン型空間1次元周波数干渉計測

Heterodyne spectral interferometry for single-shot 2D hyperspectral imaging in terahertz wave region

高澤 一輝 (M2), 葉 京武(B4)

Kazuki Takasawa, and Keibu Yo

Abstract

By combining spectral interferometry (SI) with heterodyne detection, terahertz waveform distribution along one spatial axis was acquired with a single shot EO sampling using a frequency chirped probe laser pulse. The spectral interferometer can eliminate the influence of residual birefringence of EO crystal, and heterodyne balanced detection scheme improves the detection SNR.

1. はじめに

多くの有機物の吸収帯がテラヘルツ(THz)波の領 域にあることから、テラヘルツ電磁波パルスを用い たイメージングが近年活発に研究されている.これ らは化学物質の同定,がん細胞の検出などへも応用 することができることから, THz 波領域において短 時間でハイパースペクトルイメージを得ることが 求められる.THz 波領域において 2 次元空間の分光 イメージを得ようとすると、電気光学(EO)効果を用 いて空間 (x, y) と時間 tにおいて走査しながら繰り 返し光パルスプローブ計測をする必要がある.こう して空間上の各点において時間波形を求め,それを フーリエ変換することでスペクトル情報を得る.こ ういった空間走査型時間域分光法は計測時間が長 くなるため,撮影対象も静的なものか動的で再現性 のあるものに限定される. そこでシングルショット で2次元空間イメージングする走査不要な手法が 求められる.

時間軸方向の走査を無くし,計測時間を短くする

ための工夫として、プローブ光として周波数チャー プパルスを用い、分光器を検出器として使うことで スペクトルエンコーディングを利用して単一パル スで THz 波の電界波形を計測する方法[1]や周波数 干渉法 (SI)を用いた方法[2]が考案されている.こ れらは有望な方法であるが、いずれも空間1次元ま での情報しか得られないため、空間1軸において走 査することが必要であり、現状ではシングルショッ トで THz 波領域 2 次元ハイパースペクトルイメー ジングをすることがまだ出来ていない.また、高強 度な THz 波光源を除いては、一般に THz 波検出は SN 比が低く、パルスを重ね撮りして計測している ため、シングルショット計測を達成するには SN 比 の改善が大きな課題となる.

本研究では、THz 波計測の SN 比を向上させるた めに、SI に新たにヘテロダイン検出[3]を組み合わ せることを行った.これにより高い SN 比で検出が でき、シングルショットでも THz 波計測可能なこ とを実験的に実証する.また、イメージング分光器 の周波数軸と直交した空間 1 次元を一括計測でき るため、テラヘルツ波形の 1 次元分布を単一ショッ トで取得可能であり、時間波形をフーリエ変換する ことでスペクトルも取得可能なことを示す.

2. 実験方法

周波数干渉法を適用した THz 波計測を行うにあた り, Fig.1 に示すセットアップを構築した. 周波数 チャープ増幅器で増幅したフェムト秒レーザーパ

Fig. 1. Terahertz wave detection scheme using spectral interferometry

ルス (パルスエネルギー: 0.7 mJ, パルス幅: 50 fs (FWHM),中心波長: 800 nm,スペクトル幅: 20 nm (FWHM)) はビームスプリッタ (BS) によってテラ ヘルツ波発生用のポンプ光 (600 μ J) とプローブ光 (100 μ J) に分けられる. LN 結晶を用いた波面傾斜 法によって発生した THz 波は f = 15 nm と f = 100 nm の 2 つの軸外し放物面鏡により,ビーム径を拡 大しつつコリメートされる. f = 50 nm の THz 波用 レンズによって,検出用の EO 結晶である ZnTe (厚 さ:1 nm) に集光した (ビーム直径 4 nm).

一方プローブ光はさらに 2 つに 50:50 の強度比 で分割され, そのうち 1 つはガラス棒を通過して周 波数チャープされる.このチャープパルスは THz 波 を検出するためのプローブ光であり,もう一方の超 短パルスは周波数干渉用の参照光である.ZnTe 上 でチャーププローブと THz 波が重なると,チャー プパルスによって誘起された複屈折によりチャー プパルスの各波長成分の偏光が対応して変化する. ZnTe 入射前には偏光子を通過して P 偏光になって いるため,検光子を用いれば偏光変化を振幅変化に 変換して,チャープパルスの振幅変化からテラヘル ツ波を検出することが原理的に可能となる.

EO 結晶通過後、これら2つのパルスはヘテロダ イン検出系 (LDBS, QWP, Polarizer) を通過する. LDBS によって 50:50 で光軸の高さが変わった 2 つのビームに分割される.分割された2つのビーム はそれぞれ QWP を通過するが、このとき QWP の 結晶軸は入射偏光 (P 偏光) から±β (同じ大きさ逆 向き) だけ傾いた状態になっている. ヘテロダイン 検出の時は β=10°, バランス検出の時は β=45°, 通 常検出の時は OWP を取り除いて検出を行った. Grating (1200 line/mm),シリンドリカルレンズ (f= 200 mm), 冷却 CCD (ピクセルサイズ: 7.4 µm) か ら構成される 2f 系の分光器 (0.03 nm/pix) によって フーリエ面である CCD 上に Fig. 2 のような周波数 干渉縞が生成できる.(a)が SI による干渉縞,(b)が SSI による干渉縞であり、共に横軸が波長、縦軸が 空間を表す. SI の場合は 2 つのパルスを同軸に重

ねて遅延時間を与え,SSIの場合は角度をつけて重 ねて遅延時間は与えない.±β で光軸の高さが異な るため,このように1つの画像に2つの干渉縞が得 られる.この干渉縞を解析し,それぞれチャープパ ルスの波形を求めることで THz 波計測を行うこと ができる.原理的に SSIの方が周波数分解能を高く できるが、参照光を ZnTe 結晶を通すのが光学配置 上できなかった。

Fig. 2. Spectral interference fringe on the cooled CCD

3. 実験結果

±β それぞれについて THz 波の有無におけるチャー プパルスの波形を干渉縞解析から求め, ヘテロダイ ン検出の式である (1) 式の光強度としてチャープ パルス波形を適用することで, THz 時間波形を求め ることができる. ここで *Γ* は THz 電界によって誘 起される位相リタデーションである.

$$\Delta I_{THZ} = \frac{I_1(\Gamma,\beta)}{I_1(0,\beta)} - \frac{I_1(\Gamma,-\beta)}{I_1(0,-\beta)}$$
(1)

$$=\frac{2}{\sin\left(2\beta\right)}sin\Gamma$$

まずは SSI による THz 波再構築を行った. Fig. 3 は空間軸の中心 (y=0) におけるテラヘルツ波の時 間波形を取得した結果である. 測定方法として通常 検出を用いた SSI, バランス検出を用いた SSI, ヘ テロダイン検出を用いた SSI で行って比較し, それ ぞれシングルショットとマルチショット (50 パル ス) で計測した.

Fig. 3. Results of terahertz waveform measurement using SSI (y=0)

結果としては、クロスーニコル型通常 SSI 検出や バランス検出 SSI では SN が悪く計測できない THz 波形が、ヘテロダイン SSI 検出であれば THz 波形 がシングルショットでも概形としては出ているが、 重ね撮りであっても全体的に波打っている. SSI の 場合 THz 波形を求めるのに 3 回のフーリエ変換が 必要であり、そこから高精度な波形再構築をするに は、現状の THz 波強度 (0.14 kV/cm) では SN 比が 不十分であったと考えられる.

次に SI による,空間軸の中心 (y=0) における THz 波の時間波形を再構築した.測定方法として通 常検出を用いた SI,バランス検出を用いた SI,ヘ テロダイン検出を用いた SI で行って比較し,それ ぞれシングルショットとマルチショット (100 パル ス)で計測した.その結果が Fig.4 である.ヘテロ ダイン検出の場合はシングルショットでもマルチ ショットと SN 比としては大差なく,THz 波形を確 認することができる.クロスニコル型通常 SI 検出 とバランス SI 検出に関しては,マルチショットで も波形が確認できず,現状の THz 波強度では SN 比 が不十分なためだと考えられる.SSI と比べて SI の 方が SN 比が高い理由として, EO 結晶における残 留複屈折・散乱分布の影響[4]が考えられる. これら が空間的に分布しており, EO サンプリングを用い た計測においてノイズの原因となる. SSI の場合, プローブ光と参照光はEO 結晶の同一箇所を通過で きないため,それぞれのビームでノイズの空間分布 が異なり,波形再構築の上で問題となる. しかし SI であれば, プローブ光と参照光が EO 結晶の同じ位 置を通過するため,干渉計測によって残留複屈折成 分はキャンセルされる. また,散乱についても THz 波の on/off の比をとることでキャンセルされるた め, EO 結晶由来のこれらのノイズを抑えることが できる.

Fig. 4. Results of terahertz waveform measurement using SI (y=0)

SI 計測において空間軸の中心だけでなく,他の空間上の点についても同様に波形再構築し,空間軸方向に並べることで空間 1 次元における THz 時間波形を取得することができる. Fig. 5 はシングルショットヘテロダイン SI 計測から取得した,代表的に空間上の 5 点 (y = -1.5 mm, -1 mm, 0 mm, 1 mm, 1.5 mm) における時間波形である. このように各空間上の点においてそれぞれ THz 時間波形を取得でき

る. ここでは代表的な点のみ波形を掲載したが,
59.2 μm 間隔(y 軸方向 CCD ピクセル 8 個分の平均)で任意の空間上の点における時間波形を取得することができる.

Fig. 5. Terahertz time waveform in each space ($y = 0 \text{ mm}, \pm 1 \text{ mm}, \pm 1.5 \text{ mm}$)

また, Fig. 6 は各空間における時間波形を空間軸 上に全て並べることで取得した, THz 時間波形の空 間1次元分布である. x 軸が時間, y 軸が空間, z 軸 が強度を表す.時間軸方向に見るとさきほど取得し た空間上の点における時間波形のふるまいをして いる.空間軸方向に見ると中心にピークが立ち, 裾 にいくにつれて減衰していく様子が見て取れる.

Fig. 6. Terahertz time waveform in one dimension of space (single-shot heterodyne SI)

また,各空間における時間波形をフーリエ変換す ることでスペクトルを得ることができる.こうして 得たスペクトルが Fig.7 である. 空間軸の中心から 外側にいくにつれて, 広帯域になっていることが読 み取れる.よって THz 波集光点の中心よりも外側 にいくにつれて, 高周波成分が分布していると考え られる.

Fig. 7. Terahertz spectrum in each space (y = 0 mm, ± 1 mm, ± 1.5 mm)

次に, Fig.8のプラスチックバッグに入ったラクトース (乳糖)をサンプルとして,空間1次元におけるスペクトル計測を行った.ラクトースは 0.5 THz 付近に吸収ピークを持つ物質である.

Fig. 8. Lactose in a plastic bag.

光学系としては Fig.1 のままで, コリメートしたテ ラヘルツ波ビーム (テラヘルツレンズの前)の位 置にラクトースを置いて, シングルショットヘテロ ダイン SI によってテラヘルツ波計測を行う. こう してラクトースの透過スペクトルを計測した結果 が Fig.9 である.

Fig. 9. Transmission spectrum of lactose (y = 0 mm, ± 1 mm, ± 1.5 mm)

実験配置上, ラクトースの存在する領域である y = 0 mm, -1 mm, -1.5 mm に関しては, 0.5 THz 付近における吸収が明確に確認できる.

4. まとめ

周波数干渉法 (SI) にヘテロダイン検出を組み合 わせることで, THz 波計測における SN 比が著しく 向上することを実証した. THz 波強度が弱い場合, 通常検出やバランス検出では SN 比が不十分であり, マルチショットでも計測できないが, ヘテロダイン 検出であれば空間分解したシングルショット計測 でも可能であった.

また,空間分解した計測が可能なため,空間上の 任意の点における THz 時間波形を取得でき,各空 間における時間波形を求めて並べることにより,空 間1次元における THz 時間波形やフーリエ変換す ればスペクトルが取得可能である.

References

- [1]Z. Jiang and X. C. Zhang, "Electro-optic measurement of THz field pulses with a chirped optical beam," Appl. Phys. Lett. 72, 1945–1947 (1998).
- [2] S. M. Teo, B. K. Ofori-Okai, C. A. Werley, and K. A. Nelson, "Invited Article: Single-shot THz detection

techniques optimized for multidimensional THz spectroscopy," Rev. Sci. Instrum. **86**, 1–17 (2015).

- [3] J. Degert, M. Cornet, E. Abraham, and E. Freysz,
 "Simple and distortion-free optical sampling of terahertz pulses via heterodyne detection schemes," J. Opt. Soc. Am. B 33, 2045 (2016).
- [4]T. Hattori and M. Sakamoto, "Deformation corrected real-time terahertz imaging," Appl. Phys. Lett. 90, 261106 (2007).